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ABSTRACT

A six degree of freedom manipulator, a PUMA 560, is calibrated
using three different measurement systems in order to improve the
accuracy of the manipulator. Closed loop kinematic chain modeling
theory is presented. Variations in the models for each calibration
method are presented. A simulation study is conducted to determine
feasibility of the proposed methods. Experimental data is obtained
and the actual calibration performed. A comparative analysis
Letween both simulation and experiment and between measurement
systems is performed. Various aspects regarding measurement system
modelling are discussed. The calibrated kinematic parameters are

presented as results.
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I. INTRODUCTION

There are two main objectives that are addressed in this
thesis. The first objective addresses development of practical
manipulator calibration methods. A number of different devices
and techniques have been employed to calibrate manipulators.
However, most methods involve highly sophisticated, delicate
and expensive measurement systems which are well suited for
laboratory work but are not practical in an industrial
environnent. The second objective addresses problems
associated with modelling measurement systems within closed
'>o0p kinematic chains.

The goal of calibration is to improve the accuracy of the
manipulator. Accuracy, in the sense used here, is the ability
of a manipulator to achieve a commanded position and
orientation, pose for short, of its end effector. The end
effector pose is a function of both fixed geometric properties
of the robot, such as link lengths, and variable geometric
properties, such as angular displacement of a rotary joint.
The kinematic model is developed from both the fixed and
variable geometric properties and in a qualitative sense,
these models are both well understood and well defined.
However, errors between the pose predicted by a model and the
pose achieved by a typical manipulator have been shown by

1




experiment to be 10 mm or more [Ref 1]. These errors are due,
in most part, to differences between the design or nominal
values of the geometric properties of the manipulator and the
actual manufactured values.

Another measure of a manipulator’s performance is its
repeatability. Repeatability is the ability of a manipulator
to achieve an identical pose each time it is commanded to a
specific pose. Current experimentation shows that manipulators
have a repeatability on the order of 0.3 mm ([Ref 2].
Therefore, a measure of the success of calibration is a model
with an accuracy which approaches the manipulator’s
repeatability.

There are four basic steps in the calibration process
[Ref. 3] and these steps are described as follows:

- A closed chain kinematic model of the manipulator and
measurement system is developed. During this process,
identifiable parameters are determined and the measured
guantity or quantities are specified. A set of error
functions are derived from the difference in the measured
quantities and the quantities predicted by the model.
Nominal parameter values are provided by manipulator
manufacturing specifications, measurement system
specifications and the location of the measurement system.

- Next, experimental measurenments are taken. These
measurements are a function of the actual parameter
values. Corresponding joint variable data is incorporated
into the measurement set.

- Identification of the parameters is performed utilizing
the experimental data. This process consists of
systematically adjusting the nominal parameters until the

model predictions match the experimental data and hence
the error functions become zero.




- The final step involves incorporating the identified
parameters into the software wused to control the
manipulator.

The first three steps were performed on a PUMA 560 six degree
of freedom manipulator arm wutilizing three different
measurement systems. The first of these methods corresponds to
a laboratory method and uses a Coordinate Measuring Machine
for full pose measurement. This highly accurate method
provides a benchmark for the other two methods. Although step
four of the process is not performed, computer simulation of
the process is conducted to gquantify the success of the
calibration method.

Although standardized and reliable approaches to kinematic
modelling of manipulators exist, closed chain models
incorporating measurement systems for calibration are less
well wunderstood. Difficulties arise from the issue of
identifiability of parameters. This problem was studied in
detail with the intent of producing a standardized approach
which would eliminate the ambiguity often encountered. Due in
part to the unlimited number and type of measurement systems
available, no one independant method is possible. However, a
systematic approach to the problem which alleviates most of
the difficulties 1is proposed. Several case studies are
presented which not only illustrate this approach, but
enmphasize some of the subtleties encountered in modelling

measurement systens.




II. THEORY

A. CLOSED LOOP KINEMATIC CHAIN MODELING

1. General Coordinate System Transformations

A large class of manipulators can be thought of as a
series of 1links connected by either rotary or prismatic
joints. Typical kinematic models consist of fixed coordinate
frames attached to each of the 1links and a set of
transformation equations between these coordinate frames. This
section will develop generalized coordinate frame
transformations. The following sections will then address
standardized transformations followed by a development of the
kinematic model for the PUMA-560. The following conventions
will be used throughout this document:

- Bold lower case letters will refer to vectors. A preceding
superscript refers to the frame the vector is associated
with. A subscript identifies the frame in which the
coordinates of the vector are referenced.

- Bold upper case letters will refer to matrices.

- Upper case letters, excluding F, correspond to points.
Preceding superscripts and subscripts have an identical

meaning as defined for vectors.

- Coordinate frames will be denoted by F!' where the
superscript refers to an assigned number or designation.

- Double subscripted lower case letters will usually refer
to a vector or point of the same letter. The first
subscript refers to the component of the vector or
coordinate of the point and the second subscript refers to
the frame to which it is referenced.




Consider the coincident coordinate frames of Figure 1 in
which the y and z axis have been rotated an angle ¢ about the
x axis. First, the i,, j, and k, unit vectors in the nonrotated
frame will be described with respect to the rotated coordinate
frame unit vectors 1i,, Jj, and k,. This will then provide a
method of describing the coordinates of point P, with
coordinates p,,, P,, and p,,, given the coordinates of point P,
P..» P,y and p,,, with respect to the rotated axis. Clearly,
rotation about the x axis does not alter the i, unit vector or
the x component of P. Consequently, this problem can be

reduced to a planar analysis by projection onto the y-z plane.

20
Z,
P
: Y,
\¢ |
v ' .
1 7 Yo
| 7
/
_____ Y
xO

Figure 1. Effect of Rotation of a Coincident Coordinate Frame
About the x Axis

Figure 2 illustrates this projection. Recalling that
i, and i, are identical and noting the geometry of Figure 2,

i,, j, and k, in terms of i,, j, and k, are given by Equation 1.




1, = 1,
cosyJ, - sinyk, (1)
sinyj, + cosyk,

ot
on

Rewriting Equation 1 in matrix form results in the following

expression.

i‘ ;1 0 C i;

J =i0 cosy -siny| |7, (2)
k. 0 siny cosy | |k.
Equation 2 can now be used to transform the coordinates of
point P with respect to the rotated axis into coordinates in
the nonrotated coordinate system by substituting the
coordinates of point P for the unit vectors as shown in

Equation 3.

b 1

prg l’l O o px] :
Pys! = |0 cosy -siny Py;! (3)
p.. 0 siny cosy||p,

Summarizing, the above 3x3 matrix can be interpreted in two
ways. First, the matrix columns describe the orientation of
the rotated frame with respect to the nonrotated frame. For
example, the column 2 elements indicate that the rotated y
axis, which is described by unit vector j,, has direction
7, = 04, + cosyJ, + sinvyk, (4)

Rewriting Equation 4,

Jo = 04, + cosyd, + cos(90-y)k, (5)

and noting from Figure 2 that the angle 90-y is the angle




between the z, and y, axis, then it can be seen that the column
components are the familiar direction cosines. Secondly, the
matrix can be thought of as a coordinate transformation matrix
in which coordinates of points in one frame can be
"transformed" into <coordinates in a second frame as
illustrated in Equation 3. These two interpretations of the
3x3 matrix transformation matrix will hold for all

transformation matrices to follow.

Figure 2. Planar View of a Coordinate Frame Rotated About its
X Axis

I{ the rotated coordinate frame is now rotated about
the y, axis an angle 6, then in a similar manner to the
preceding analysis, the problem reduces to analysis in the x,-
z, plane. Referring to Figure 3, the i,, j, and k, unit vectors
in terms of the rotated axis x,, y, and 2z, are given by
Equation 6. These equations are again rewritten in matrix form

as given in Equation 7.




[
e
n

cosfi, + sinbk,

3y = I, (6)
-sinBi, + cosbk,

K
0

i] cos® 0 sir@ i}
o 1 0 jl (7)
-sin® 0 cosB] |k;

k,

Pre-multiplying both sides of Eguation 7 by the matrix in
Equation 2 as shown in Equation 8, will result in a
transformation between the original coordinate frame and the

twice rotated coordinate frame.

(i’ -0 0 | [cos® 0 sinB i]
1j = |0 cosy —sinwg 0 1 0 1 (8)
k) |0 siny cosy ] |-sinb 0 cos6] (k..

The preceding analysis demonstrates a valuable property of
transformation matrices. Further rotations of a coordinate
frame can be referenced to the original coordinate frame by
post multiplying any previous transformation matrices by the
transformation matrix that describes the next rotation.

A development similar to that leading to Equations 2
and 7 for a rotation about the z axis by angle ¢ results in
the following transformation matrix R,.

cos¢d -sind O
R, = |sin¢ cosd © (9)
0 0 1

In addition to rotation of a coordinate frame about
its axis, translation of the frame must be accounted for.
Consider the coordinate frame with origin at point P in Figure

8




Figure 3. Planar View of the Effect of Rotating a Coordinate
Frame About its Y Axis

4. Let R be the transformation matrix with elements r,, that
corresponds to rotation of a coordinate frame with origin at
P and axis originally aligned with the coordinate frame at O.
A point Q with coordinates q,,, q,, and g,, with respect to the
rotated coordinate frame can be expressed in coordinates with

respect to point O by Equation 10.

s (10)

It would be convenient if this translation transformation were
incorporated in matrix form. This can be accomplished by
forming an augmented 4x4 matrix and augmented vectors as
illustrated in Equation 11. Matrices of this form are

typically referred to as homogeneous transformation matrices.




Xl
|
) e —
2, __‘__J//
I
|
2, |
0 = - -~ — - >———
(o]
/
______________ _y
Xo
Figure 4. A Rotated and Translated Coordinate Frame
x,0 [n, o, a, p)I[x
Yol _|Py Oy @y Byl Vs (11)
z, n, o, a, p,||z.

) |0 Cc 0 1]l1

The wupper 1left 3x3 submatrix has the same orientation
interpretation as noted earlier where the n, o and a elements
are the direction cosines for the rotated x, y and z axis with
respect to the original axis respectively. The upper 3
elements of column four of the matrix define the origin of the
rotated and translated coordinate frame with respect to the
original frame. With this interpretation in mind, the
convention T,” will be used when referring to a transformation
from frame i to frame j. When no subscript is indicated, T?,
then the transform is interpreted as being from a known

reference frame, which will be clear from the context, to the

10




j** coordinate frame. Additionally, the previously described
3x3 rotational transformation matrices can be expressed
individually as 4 by 4 homogeneous transformation matrices as
well. The convention Rot(x,¢y), Rot(y,8) and Rot(z,¢) will be
used in the following discussion and these matrices are shown

in Equations 12 through 14.

lf‘. 0 0 C
0 cosy -siny O
Fot(x, g s v ¥ (12)
,0osny cosy O
e 0 0 1
"cosB 0 sinb O
i
0 2 0 0,
Fotiv,8; - T | (13)
1-sinB® 0 cosB 0O
Lo o 0 1
cos$ -sind 0 O
sin¢ cos 0 C
Fot(z,¢) = ¢ ¢ { (14)
0 0 1 (‘;
o 0 0 1]

Additionally, a standard translation transformation will be
denoted by Trans(x,y,z) and has the form shown in Equation 15
where the upper 3x3 rotational submatrix has been replaced
with 3 3x3 identity matrix. If the coordinate frame is only
translated in one direction, say X, then the symbol Trans(x)
will be used to denote this transformation and the p, and p,
terms in Trans(x,y,z) are set to zero.

Given two coordinate frames F° and F’, the homogeneous
transformation matrix T, and x, in F', then x, can be found by

Equation 16.
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100 p,
010 p.
Trans(x,y,z) = Y (15)
001rp,
C 00 2
x, = To x, (16)
If x. is known and x, desired, then
(Te) ™" x, = (Tg)™* tg x,
(7o) ' x, = x, (17)
T, x, = x;
This of course requires knowledge of the inverse

transformation matrix. However, as described by Paul [4], if

a transformation matrix T has the elements of Equation 18

then its inverse is evaluated by

Equation 19 where n, o, a and

p are the four column vectors of T and "." is the usual vector

dot product operator.

nX OX aX

- n, o, a,

z OZ a.’.’

0 0 O

n, n, n,

. o, 0, O,
0, 0, O,

0 0 ©

As noted earlier,

Fx

¥ (18)
F,

..p-n
_p.o
_p.a

(19)

given transformations T, and T,

then the transformation from F° to F? can be calculated by post
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multiplying T,) by T,°. This product can then be designated as
T,> or simply as T° where the reference frame F° is assumed.
Figure 5 1illustrates various transformations by use of a
directed graph. Each node represents a coodinate frame and the

directed paths represent transformations in the given

direction.
T, =T"
0 - 1
Vol
AN
3 _ 1 2 3 \7~, T,z
T '=T,T,T, S
3 T, T2
T23=(T32)1

Figure 5. Directed Transformatior Graph

2. Roll, Pitch, Yaw and Translation Transformations
To transform between two coordinate frames fixed in
space as shown in Figure 6 requires, in general, 3 rotations
and 3 translations. Notiang that the order in which the
transformations occur is important, adoption of one of the
standards will help avoid confusion. The standard used for
this type of orientation transformation in this work is roll,

pitch and yaw.
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Rot (y,@)

Aot .9 Rot (x))

X

TRANS(x)  _ ——\

~ TRANS (3)
R \> K

Ye / TRANS (2)

/ Xl

*xo

z,

Figure 6. Roll, Pitch, Yaw and Translation Transformation
Between Two Fixed Coordinate Frames

The roll, pitch and yaw rotation transfecrmation will
be denoted as RPY(¢,0,¢) and is a product of the previously

described rotation matrices as follows

RPY(¢,0,¥) = Rot(d,z) Rot(8,y) Rot(y¥,x) (20)
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Carrying out the indicated matrix multiplication, the elements

of RPY(¢,0,y) are given in Equation 21 where cosine and sine

are denoted by c and s for brevity.

chpcO® cpsbsy-sécy chsbBey+spsy O

s¢cf sopsOsy+cdcoy  spsOcy-cdsy 0O (21)
0]

-s6 cOsy cOey
0] 0 0] -

RPY(d,0,¢)

With the orientation now specified by RPY(9¢,0,¢¥), it is only
necessary to specify the translations between the two frames.
This can be accomplished by multiplying RPY(9¢,0,y) by
Trans(x,y,2z). Note that prenmultiplication by Trans(x,y,z)
implies that the translations occur on with respect to F° axis
and that post multiplication implies that the translations
occur with respect to the rotated axis. The convention used
throughout this work is post multiplication. Summarizing, the

transform T, is calculated by

Ty

RPY($,0,V¥) Trans (x,Vv, z) (22)
Rot (¢, z) Rot(0,y) Rot (¥, z) Trans(x,y, z)

1

with each step in the transformation illustrated graphically
in Figure 6. Transformations of this form will be denoted by
RPYT(¢,0,¥%,x,yY,2) or simply RPYT.
3. Denavit-Hartenburg Transformations

As 1indicated in the preceding section, 3 axis
rotations and 3 translations are, in general, required to
transform between two coordinate frames. However, the geometry
of successive links of a manipulator imposes constraints on
the transformation between coordinate frames fixed in these
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links and a subsequent reduction in the number of rotations
and/or translations required. The form of these
transformations is a function of the link geometry, the type
of interconnecting joints and the placement (orientation and
position) of the i1ink frames. Clearly a systematic approach to
frame allocation is desirable if not essential. One widely
accepted systematic approach is the Denavit-Hartenburg method.
Typical manipulators, such as the PUMA-560 illustrated
in Figure 7, consist of a series of links and joints. An n
degree of freedom manipulator will have n links and n joints.
The links and joints of the manipulator are labeled in the
following manner. The first joint is labeled 1 and the joint
number is incremented by one for each successive joint. Link
i lies between joint i and joint i+1. The base or base link is
defined as link 0.
Figure 8 illustrates a generic link. The parameter
a, is the common normal distance between joint axis n and n+l
and is usually referred to as the link length. A plane, normal
to a, at the intersection of the common normal a, and joint
axis n+l1 will by definition contain joint axis n+l1 and lines
parallel to joint axis n. The angle between joint axis n+l1l and
a line parallel to joint axis n in the plane is designated a,,
and is generally referred to as the link twist angle. In
addition to a,, common normal a,., intersects joint axis n. The
distance between these two common normals along the axis is

designated d, and is usually referred to as the distance
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Joint 2

Link |

Joint 1 Joint 3

Link 4

Joint 5

Joint 4

Figure 7. The PUMA 560 6 DOF Manipulator

between the links or the offset distance. Similarly, 4,., is
the offset distance along joint axis n+l1 between common
normals a, and a,.,. A fourth parameter 6,, is defined as the
angle in a plane perpendicular to joint axis n between common
normals a,.; and a,.

With these parameters identified, assignment of
coordinate frames to each link based on these parameters can
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Joint n Joint n+|

Figure 8. Generic Manipulator Link

be accomplished. Figure 9 illustrates the process for the case
of revolute joints. Frame n, F", lies at the intersection of
a,, the common normal between joint axis n and n+l1, and joint
axis n+l. If the joint axis intersect, then the intersection
is chosen as the origin which is consistent with the above
description noting that a, is zero. If the axes are parallel,
then the frame origin is chosen so that the offset distance is
zero for the next defined frame origin. The coordinate frame
axis are aligned as follows. 2z, lies on joint axis n+l1. The x,
axis is aligned with a, when it exists. If a, does not exist,
as in the case of intersecting joint axis, x, is aligned
perpendicular to joint axis n and n+l. The zero position of
the joint variable, 6,, is defined when x,, and X, are both

parallel and in the same direction.
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Jointn Joint n+|

’

s
 8a T

Joint n-i

bg”" Link n= Link el

Linkn-2

Figure 9. Frame Allocation Between Rotary Joints

Before proceeding with an explanation of the method of
assigning coordinate frames for prismatic joints, a simple
illustration of a fundamental difference between prismatic and
rotary joints is offered. Consider a point P traveling in a
circular path in space as illustrated in Figure 10a. The path
of P defines a plane and hence a perpendicular direction.
Furthermore, the center of the circle in the above plane
clearly defines a point in space with which to reference point
P. On the other hand, linear motion of P as shown in Figure
10b offers no such reference point. In fact, the axis is

indistinguishable from any other parallel axis.
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a) (b)

Figure 10. Identifiable Features Resulting from Circular and
Linear Motion

Figure 11 illustrates a prismatic joint 1located
between two rotary joints. For the prismatic joint, the joint
distance 4, is the joint variable. As noted in the preceding
paragraph, the position of the joint axis is undefined and
only the direction of the axis is known. Consequently, the
common normal parameter a, is meaningless. With this in mind,
the origin of F" is placed coincident with the next defined
link coordinate frame origin. Note that this placement may be
ambiguous if the prismatic joint were at or near the end of a
serial link manipulator and an alternative placement may be
necessary. When placed at the next defined origin, the 2z, axis

is aligned with joint axis n+l. The x, axis is positioned
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perpendicular to 2z, and the prismatic joint axis n. The zero
position for prismatic joint is defined when the distance d,

in Figure 11 is zero.

Joint n

i Joint ner

Joint n-| 4

Link n-2

Figure 11. Frame Allocation for Prismatic Joints

With the manipulator placed in the zero position for
both rotary and prismatic joints as defined in the preceding
paragraphs, positive sense of rotations can be defined and
then the appropriate sense of all the z axis determined.
According to Paul [Ref. 5], the base 1link frame of the
manipulator, F°, will be coincident with the origin of F'.
However, such an allocation will not afford a standard
transformation from F° to F!' unless joint axis 1 and 2 happen
to intersect. A more appropriate location of the base frame
will be to place the 2z, axis coincident with joint axis 1 and
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in a direction satisfying the right hand rule. The x, axis
should be aligned with the common normal between joint axis 1
and joint axis 2. If joint axis 1 and 2 intersect, then x,
should lie perpendicular to the two axes. Note that this
method is generally consistent with the previously described
method with the exception that d. is defined =zero. This
definition of F° is not necessary but other locations may lead
to difficulty in determining identifiable parameters as will
be discussed later. Finally, the end link coordinate frame,
link 6 for a 6 degree of freedom manipulator, is placed
coincident with the preceding frame and with the 2z axis
aligned with the previous frame’s z axis. For a given set of
joint variables and parameters, the end link frame is fixed in
space. With this in mind, a 6 degree of freedom homogeneous
transformation, such as Roll, Pitch, Yaw and Translation, is
then necessary to describe the pose of an end effector
coincident with the end link frame.

Now that the pose of each link frame is defined, the
transformation matrices between frames can be developed. The
type and order of the rotation and translation transformations
which form the overall transformation from frame to frame
follows in a natural way from the path from F*?* to F".
Referring back to Figure 9, F"! is rotated 6, about z,, so that

rotated x,., is aligned in the direction of a,. The rotated

frame is then translated d, in the 2z, , direction followed by

a translation a, in the rotated x,, direction. The rotated and
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twice translated frame now only requires alignment of its z
axis with joint axis n+1 which is accomplished by a rotation
about the rotated x,., axis, which now is equivalent to x,, an

angle a,. In equation form, T, ,” can be expressed by

T, = Rot(z,0) Trans(0,0,d) Trans(a,0,0)Rot (x,a) (23)

Carrying out the indicated matrix multiplication,

cosB -sinBcosa sinBsina acosB
sin® cosbcosa -cosBsina asind

0 sina cosa da
0 0 0 1

Tnn,l = (24)

For a prismatic joint, T,.,” reduces to the matrix in Equation

25.

[cosB -sinBcosa sinBsina 0
o jsir® cosBcosa -cosBsina O]
210 sine cosa d

|
0 0 0 1;

‘ (25)
|
|
4. Modified Denavit-Hartenburg Transformations

In general, application of the Denavit-Hartenburg
method will result in an accurate model of a manipulator.
However, some limitations exist such as the previously noted
potential ambiguity with regard to prismatic joints and a
disproportionate model [Ref. 6].

A proportional model can be defined as one in which
changes in any model parameter will result in changes in other
model parameters of the same order of magnitude. This is
clearly not the case with Denavit-Hartenburg when mo~clling
parallel or nearly parallel consecutive joints. Consider the
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two nearly parallel intersecting axis lying in a plane P in
Figure 12. A small rotation of axis uu’ in the plane P will
result in a large change in the location of the point of
intersection. Large changes in the location of the common
normal a, between nearly parallel axis can occur in much the
same way. Furthermore, small variations in orientation between
nearly parallel axis may actually place them parallel in which
case a unique common normal no longer exists. These
potentially large variations in the location of the common
normal corresponds to equally large changes in the parameter
d, in the Denavit-Hartenburg method. It should be noted that
this apparent flaw in the Denavit-~Hartenburg method is only an
issue when developing a kinematic model for calibration where
the fixed model parameters become variables and are perturbed
numerically. Disproportionate changes will frequently result
in numerical instability, an issue which will be addressed in
greater detail in following sections. A model developed for
the sole purpose of determining the end effector pose with
respect to a given reference frame, the so called forward
kinematic solution, will have, excluding the joint variables,
fixed values based on assumed geometry and therefore immune to
problems of proportionality. Of course the validity of the
model is only as good as the geometric assumptions and this
provides the motivation for calibration.

The following modification to the standard Denavit-

Hartenburg transformations will result in a proportionate
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PN

Figure 12. Illustration of Disproportionate Length Variation
Due to Small Axis Rotation

model for consecutive revolute joints. This modification
follows one proposed by Hayati and Mirmirani [Ref. 7]. Rather
than specifying a common normal distance between two parallel
or nearly parallel joint axis n-1 and n, define a plane that
is perpendicular to joint axis n-1 and located at the origin

of F"' as illustrated in Figure 13. The intersection of this
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plane and joint axis n defines the origin of F" which is
defined whether the axis are parallel or not. As shown, a
rotation about z,, an angle 6 will place the rotated x,., axis
on the line 0,.,0, and thus becomes the first transformation.
Translation along 0,.,0, a distance r, will place the origin of
the rotated and translated coordinate frame coincident with
O..,. In general, rotation about two different axes are
required to align the third axis of a frame in some
arbitrarily specisied direction. Therefore, to align the z
axis of the rotated and translated frame with joint axis n+1,
which maintains continuity with the standard Denavit-
Hartenburg method, rotations about the x and y axis are
required. Equation 26 summarizes the above transformations in

equation form.

T, , = Rot(z,0,) Irans(r,,0,0)Rot(x,a )Rot(y, B, (26)
Carrying out the indicated matrix multiplication of Equation
26 results in the matrix elements given in Equation 27 where,

for brevity, ¢ and s have been substituted for sine and cosine

respectively.
[-sasPsB+cPcB -cas® sacPsO+sBc® rcH]
T:I::@sasBCG‘CBSG cacd -sacPcO+sPsd rsb (27)
| -casp sa cacPo
i 0 0 0 1

Comparing Equation 26 and Equation 23 it can be seen
that a transformation T as in Equation 28 will satisfy any one

of the three manipulator transformations. This is accomplished
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by:

- setting B egual to zero for standard Denavit-Hartenburg
transformations between revolute joints:

- setting the parameters B and a to zero for standard
Denavit-Hartenbur transformations for prismatic joints:

- setting the parameter d to zero for the Modified Denavit-
Hartenburg transformation;

T = Rot(z,0) Trans(z) Trans(x) Rot(x,a'Rot(y,B) (28)

ZEnt

Figure 13. Modified Denavit-Hartenburg Transformation

This transform T is the standard transform used in this work
for manipulator link to link transformations. The
transformation allows for standardizing parameter information
in tabular form as well as a single subroutine conputer code
for manipulator transformations. The elements of this
transform are given in Equations 29 where t,, is an element in
the i*" row and j* column of T. Any future reference to a
transform between links of a manipulator will be considered to
be in the form of Equation 29.
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= cosBcosP-sinBsinaasinf
= sinBcosa

= costheatsinP+sinBsinacosp
= acosH
sinBcosP+cosfsinasinf
= cosBcosaj
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= -cosasinf
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5. Other Special Cases

Up to this point, two specific types of transformation
matrices have been developed, the Roll, Pitch, Yaw and
Translation matrix, RPYT, and the modified Denavit-Hartenburg
transformation matrix. These matrices will be used exclusively
for the kinematic models developed in this thesis. However,
there are cases when transformations must be described between
coordinate frames and other 1less well defined geometric
quantities. For example, suppose a measurement system somehow
clearly defines a point M in space but fails to define a set
of axis. To incorporate this measurement system into the model
of the manipulator, it is necessary to develop a transform
from the point, M, to a frame in the manipulator, normally F°,
as illustrated in Figure 14. There are no axes to align nor
are there axes on which to translate from M to the origin of
F°. However, a number of alternatives are available to
transform from F° to M. Any set of three of the six variables
of RPYT can be used to perform such a transformation so long
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as one of the variables is a translation. A transformation
satisfying the preceding, S/, can be formed from RPYT by
setting the irrelevant variables to zero. Such a transform
fixes a frame at point M which has axis orientation dependant
on both F° and S.)*. A transformation from M to F° can then be
calculated by inverting S)*. A frame defined in the manner
above will be denoted with italicized pr' . so as to

distinguish it from an independently defined frame.

Z,

Figure 14. Frame to Point Transformation

6. The Kinematic Chain
The path through the series of frames illustrated in
Figure 15 can be thought of as a kinematic chain where the
transforms between frames are analogous to links. As described
earlier, the pose of the last frame in the chain with respect
to the origin of the chain can be formed by post multiplying

each transform in sequence as shown. Before applying this
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concept to a manipulator, it should be noted that it is
frequently convenient to define an external reference frame in
the manipulator workspace since F°, as defined earlier, will
normally be internal to the manipulator structure and not
easily measured or referenced from the manipulator workspace.
In the fcllowing experimental work, this external reference
frame is coincident with the measurement system reference
frame and is referred to as F*. If F* is a fully defined and
independent frame then all six parameters of RPYT are
necessary to transform from F* to F° and this transformation,
T.° becomes the first link in the chain. The following links
in the chain are described by appropriate forms of the
modified Denavit-Hartenburg transformations. Recalling that
the last frame in the manipulator in accordance with the
Denavit-Hartenburg method is placed coincident with the
previous frame, then a RPYT transform is required to transform
from the last Denavit-Hartenburg frame to a frame located at
the end effector, F*. The pose at F* with respect to F* denoted

T, or simply T can be calculated by Egquation 30.

TE =T TS T, TS (30)
7. The Thirty Parameter Puma Kinematic Model
As noted by Mooring, Roth and Driels [Ref. 8], the

number of parameters N in a complete model is

N=4R + 2P + 6 (31)
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Figure 15. The Kinematic Chain

where R is the number of rotary joints and P is the number of
prismatic joints. Complete in this sense means that the model
contains a fully defined independent external reference frame
and an independently defined tool frame. The PUMA-560 consists
of 6 rotary joints which by Equation 31 suggests that the
complete model will have 30 parameters. The PUMA-560 30
parameter model is developed in the following Section and the
actual frame locations are illustrated in Figure 16.

The location of the external or measurement system
reference frame is arbitrary within the manipulator’s
workspace. All six parameters of an RPYT transformation will
be required to transform from F* to F°. At this point, it will
be useful to distinguish between joint parameters and joint
variables as used in calibration. The joint variable, denoted

0,, is associated with the amount joint i is rotated from its
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Figure 16. PUMA-560 Frame Allocation

zero position as defined by a joint encoder. The Jjoint
parameter, denoted 660, is essentially the error between the
encoder zero and the actual zero position of the i*" joint as
defined by the Denavit-Hartenburg method. In the calibration

process, the value of the joint variable for a given position
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i1s considered fixed. The joint parameter or error is to be
determined from its nominal value which of course is zero.
With this in mind, the transformation T,* would, in part,
consist of a rotation Rot(z,,66,+6,) which is equivalent to the
product of Rot(z,,86,) and Rot(z,,0,). The first rotation,
Rot(z,,66,), 1is between two fixed frames. Denoting the
intermediate frame as F°, then a RPYT transformation made up
of six fixed parameters, T,°’, could be developed which would
be equivalent to the product of T,° and Rot(z,,60,) which is
made up of 7 fixed parameters. Therefore &6, 1is not
independent and cannot be individually identified. As a final
note, F° is considered to be at the actual zero position, F%
in the preceding discussion, T,° is a transformation between
F* and F° as now defined. Additionally, one reason for defining
the parameter d, to be zero is t~ eliminate the dependency
that clearly would exist between the z translation in T,° and
any subsequent translation d, along the same z axis in T.'.
As described earlier, F° is placed with the 2, axis
coincident with joint axis 1 and directed upward in accordance
with the right hand rule. Joint axis 1 and 2 are nominally
coincident and perpendicular. F' is allocated in accordance
with standard Denavit-Hartenburg with 2z, aligned with joint
axis 2 and x, perpendicular to joint axis 1 and 2. With this
allocation, parameters a, and a, are nominally zero and -90°
respectively. Joint axis 2 and 3 are nominally parallel so F?

is assigned using the modified Denavit-Hartenburg method. As

33




illustrated in Figure 16, this places F? external to the

manipulator. Due to the orthogonal nature of the axis thus
far, 6., a, and B, are all nominally zero with a, nominally
431.85 mm as shown. Joint axis 3 and 4 are nominally
perpendicular and offset a perpendicular distance of nominally
20.33 mm which become a, in T.,>. The z axis of F* is aligned
with joint axis 4 with an offset distance, d,, of 149.09mm.
Note that as illustrated, 1ink 3 is shown with 8, equal to
approximately 90°. Therefore, a, is 1n the negative x
direction and @, is nominally 90°. The z axis of F* is placed
in the direction of joint 5 which is nominally coincident with
and perpendicular to joint axis 4. Consequently, 8, and a, are
nominally zero and a, is -90° with the chosen direction of z,.
The distance between F’ and F‘ along joint axis 4, which
corresponds to d,, is 433.0 mm. F® is placed so that z. lies in
the direction of Jjoint axis 6 which is again nominally
perpendicular to joint axis 5. Therefore, 6., d. and a, are
nominally 2zero and a. is nominally 90° for the chosen
direction of 2z,. According to standard Denavit-Hartenburg
methodology, a sixth frame would be placed with its origin
coincident with the origin of F°*. This would then be followed
by a six parameter transformation to the end effector frame.
However, in a similar manner as before, the parameters of T.®
would be dependant on all four parameters of T.° and hence not
independently identifiable. Therefore, F® will be considered

the last 1link frame and T.® will be a RPYT transformation
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containing a rotation about 2z, eguivalent to the sum of the
joint variable 6., joint parameter 66, and any other fixed
rotation necessary for proper alignment at the end effector.

Table 1 summarizes the parameters for the five
modified Denavit-Hartenburg transformations. A tabular
presentation of this form is wusually referred to as a
kinematic parameter table. The bold elements comprise the 18
identifiable parameters of the manipulator. The other elements
are zero as defined previously. The additional 12 parameters
of the 30 parameter model are the variables of T,° and T.F
which are dependant on the location of the external reference
frame and the geometry of a particular end effector. The
parameters of Table 1 were utilized in each of the following
experiments. The makeup of T,° and T." will be described for
each specific case.

TABLE 1. PUMA 560 KINEMATIC PARAMETER TABLE

T 6,’ d, (mm) a, (mm) a,’ B,°
0-1 0.0 0.0 0.0 -90.0 0.0
1-2 0.0 0.0 431.85 0.0 0.0
2-3 0.0 149.09 -20.33 90.0 0.0
3-4 0.0 433.00 0.0 -90.0 0.0
4-5 0.0 0.0 0.0 90.0 0.0
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B. NUMERICAI SOLUTIONS UTILIZING IMSL ROUTINE ZXSSQ
1. Introduction
The IMSL routine ZXSSQ 1is a Levenberg-Marquardt
algorithm for the solution of non-linear 1least squares
problems. The general problem statement follows

- Minimize: f,(x)* + f,(xX)> + « « « + £ (X%)?
- over: X = [ Xy, Xz, ¢ * o, Xy ]

At the n*" iteration, an estimation of x"'* is calculated using
a numerical estimate of the Jacobian. The Jacobian estimate is
calculated by a forward or central finite difference method.

The routine requires a user supplied function for
calculation of the f,(x) functions. An initial estimate of x
is supplied to the routine by the main or calling program
along with convergence criteria. Three convergence criteria
are available:

- NSIG: The first convergence criteria is satisfied if on
two successive iterations, the parameters agree to NSIG
significant digits.

- EPS: The second convergence criteria is satisfied if the
residual sum of squares for two successive iterations is

less than EPS.

- DELTA: The third convergence criteria is satisfied if the
euclidean norm of the estimated gradient is less than
DELTA.

Satisfaction of any of the three criteria will halt program
execution and a number of parameters are returned to the
calling program including the final estimate of x, the final
value of each f,(x), the residual sum of squares in variable

SSQ and the satisfied convergence criteria. Three variations
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of the algorithm are selectable by defining option parameter
IOPT. If the residual sum of squares is close to zero then
setting IOPT to =zero (Brown’s algorithm without strict
descent) will usually perform satisfactorily. This setting of
IOPT was used for all applications of the routine due to the
problem formulation.

The general program flow is illustrated in Figure 17.
An initial estimate, x°, is supplied from the calling program
along with several parameters including the convergence
criteria and algorithm option. The routine then calls the user
supplied subroutine N times where N is the number of elements
of x in order to calculate the finite difference gradient
approximations. ZXSSQ then calculates a new estimate, x™*', and
then calls the user supplied routine to calculate f,(x™*). The
process repeats until any one of three convergence criteria is
satisfied.

Although mathematically equivalent, two different
formulations of the problem statement for implementation of
ZXSSQ are used in this thesis. Each formulation is described
in the following two sections.

2. Data Fitting

In the calibration process, measurement of the end
effector pose, full or partial, are made and then this data is
used to adjust or fine tune the kinematic model parameters. A
simplistic view of this problem consists of holding the usual

model variables fixed and varying the constants. A simple
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Figure 17. General Program Flow for Implementation of ZXSSQ

example follows.
Suppose the mathematical model for a physical process

is assumed to have the form of Equation 32.

gi(x,y) = a,x? + a,x + a,y? + a,y + a, (32)

The values of the constants of Equation 32 are arrived at

based on theory, physical laws, reasonable assumptions, or
design parameters and assumed to be greater than zero for this
example. It is desired to know the actual values for these
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constants. For application of ZXSSQ, the problem can be
formulated in the following manner.

Measure g(x,y) for m known values (x,y). Denote these
measured g(x,y) as h,, h,, - « « , h, where h, corresponds to
(x,,Y,). Compute g,(%,,y,) from Equation 32 and then let
f, = g, - h;. In this problem, the five a, are the variables.
The problem statement is then

- Minimize: [f,(x)]?

- Over: x = [ a,, a,, a,, a,, a; |
The problem is now in a form suitable for application of
ZXSSQ. The calling program would provide the assumed values of
the constants a,, a.,, a,, a, and a, as initial value x°. The
user supplied function would compute values of g, based on
(%x,,Y,), which are fixed for a given i, and x™!, the updated or
perturbed values of a,, a,, a,, a, and a,. Updated values of f,
are then calculated using the new values of g,. Note that this
problem consists of 5 unknowns, the coefficients of g in
Equation 32, and each measurement provides one known value h;.
Assuming that the actual system does satisfy a paraboloid
relationship and in the absence of measurement noise, then at
least 5 measurements are necessary for a solution.

3. oOptimization

2XSSQ can be employed in an optimization scheme in
which one or more analytic expressions are minimized. In this
case, the constants are fixed and the variables are perturbed.

A sinple example follows.
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Clearly, a simple analytic solution can be obtained
for the minimum of the paraboloid of the previous example.
However, for illustrative purposes, consider g to be described

by two functions g, and g, as shown in Equations 33.

gix,y) = g.(X,¥y) + g, (x,¥),
where g, (x,y) = a,x* + a,y? + a, (33)
g (x,y) = ax+ ay

In this example, the problem can be stated,

- Minimize: (g,(x))® + (g.(x))?
- Over: x=[ x, Y ]

which is now in the proper form for application of zXSSQ. In
this case, the calling program must supply an initial guess of
the vector x°. If the minimized functions are unimcdal, any
reasonable value of x° should allow convergence. Problems
associated with non-unique solutions can be addressed in a
number of different ways and are somewhat problem dependant.
A good initial estimate of x° when known may suffice.
Another problem which may arise in an optimization
problem is that of proportionality. It is clear that it would
suffice to minimize g(x) rather than the two functions g, and
g, although both approaches should have similar results. The
particular problem formulation chosen in this case
demonstrates two ways in which a problem <can Dbe
disproportional. First of all, for values of x and y much
greater than or less than one, small changes in x and y may
have much greater effect on g, than on g,. Secondly, if a. is

much greater than zero, then at or near the minimum, g, may be
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much greater than g,. Disproportionate problern formnulation can
lead to numerical instability or inaccuracies. Scaling
techniques, such as dividing g, by a.,, or reformulating the
problem statement can reduce or e.iminate difficulties

associated with proportionality.

C. KINEMATIC MODEL PARAMETER IDENTIFICATION METHODOLOGY
1. General Scheme

Without loss of generality, the general scheme will be
described considering the previously described 30 parameter
PUMA kinematic model and a measurement system capable of full
pose measurement. Less capable measurement systems generally
result in a reduction in the number of identifiable parameters
in the model. However, the general scheme remains the same and
the specific differences will be addressed on a case by case
basis.

Given the 30 parameter kinematic model based on
nominal values, actual parameter identification cr calibration
is performed in the following manner. Measurement of the end
effector pose is made and the joint variable values and the
measurement pose data are both recorded. The manipulator
joints are varied, additional measurements made and recorded,
and the process repeated until a sufficient data base is
collected. Sufficient has at least two meanings in this case.
First of all, note that the model must reflect the
capabilities of the measurement system. If the measurement
system is capable of measuring full pose as in this case, each
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measurement consists of six knowns, three positions and three
orientations. For an N parameter model, a minimum of N/6
measurements are required. However, some measurement noise is
inevitable and some larger number of measurements must be
taken to achieve a desired accuracy. Some additional factors,
some of which will be discussed later and some which are
issues for further research, must be considered when
attempting to quantify the meaning of a sufficient data base.

The pose data can be recorded in matrix form and will
be denoted T*!' where E refers to end effector as before, A
refers to actual or measured and i used to denote a specific
measurement. The forward kinematic solution can be computed
based on the nominal parameters and the i*" set of joint angles
and stored in T**' where C refers to the calculated value.
Recall that when calculating the forward solution, both the
joint variable and joint parameter must be taken into account.
A matrix AT, can be computed from the difference of T*! and
T*™!. As described by Paul [Ref. 9], a differential

transformation matrix has the following form

o -8, 86, d

z y X

i 6 -
A - , 0 6, dy (34)
-8, & 0 d,

0 0 0 0

The A matrix of Equation 34 is a good approximation for small
joint variable variations and provides a reasonable

approximation if all nominal parameters are "close" to their
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associated actual values. AT, will not necessarily have the
odd symmetry of the upper 3 by 3 submatrix of the A matrix of
Equation 34. However, an average value of the magnitude of §,,

§, and 6, can be computed as shown in Equation 35

L.; - L.
6}{ = _'_2—.
§ = |f1 " tu (35)
¥ 2
5 = tlz B t21
€ 2

where t,, is the i*" row and j*" column entry of AT,.
This problem can now be stated in a form acceptable for

implementation of ZXSSQ:

n ¢

Minimize: zz (flj(x))z (36)
i=1 7=1

over: x= (6,0, ., ¥, %V, 2, a,.,0.,0,, " X, vz 2]

where x is vector of length 30 containing the kinematic
parameters, N is the number of measurements, i corresponds to

each of the N measurements and

[
1]

[o%

[ S8

6X
5.
-5, (37)
= dx
=d,
d

i

PUEME U NN
NHHHNN
]

Note that §&,, § 5§, are the average values of AT, as computed

y/’

in Equations 35 and d4,, d, and d, are the t,,, t,, and t,,

Y

elements of AT,.
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2. Program ID6 (Generic Version)

The progran ID6 was used to compute the numerical
solution of the calibration problem. A flowchart for the
program is shown in Figure 18. The program is essentially the
same for all three experiments performed in this thesis.

Specific differences will be addressed as each experiment is

presented.

( staRt )

r*

s

¢
READ '
/// INPUT.DAT ,//

|

INITIALIZE X

rd iEﬂD ;
MEASUREMENT /
DATA /

CALL |
ZXSSQ |

CALCULATE
POSE ERROR

Figure 18. Program ID6 Flowchart
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The program reads an input file consisting of the
kinematic parameters for the particular model. These
parameters are used to 1initialize the vector x for the
subroutine ZXSSQ. The measurement data set is read from a file
and assigned to several different vectors. One vector contains
the full or partial pose data of the measurements and is of
length N where N is the number of measurements. In the case of
full pose measurement, this vector has dimension 4 by 4 by N
and contains N T® matrices. The joint variable data is stored
in six 1 by N vectors, one vector for each joint variable.
The various parameters and options associated with ZXSSQ are
initialized and then the subroutine is called.

Upon ZXSSQ termination, the updated values of the
kinematic parameters are output to a file along with the
residual values of position and orientation as appropriate.

Associated with each version of IDé is the "user
defined subroutine" called by ZXSSQ titled PUMA_ARM. The
subroutine is passed the current value of x for either
gradient estimation or computing the updated value of the
minimizing functions. The joint variable data and measurement
data are passed via a common block. The parameters are updated
by this current value of x. N iterations of the following
calculations are performed where N 1is the number of
measurements.

During the i* iteration, the 3joint variables for

measurement 1 are added to their corresponding 3joint
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parameters. The forward kinematic solution is calculated based
on the current value of the parameters. The minimizing
functions for measurement i are calculated based on the
forward solution and the measurement data as described in the
preceeding section. The process is repeated until i = N at

which time the function values are passed back to ZXSSQ.

46




III. THREE CALIBRATION TECHNIQUES

A. COORDINATE MEASURING MACHINE FULL POSE CALIBRATION
1. Physical Description of the Measurement System
a. The Coordinate Measuring Machine

The Coordinate Measuring Machine, CMM, is
illustrated in Figure 19. The horizontal base assembly
consists of a fixed base and a carriage which is free to move
along the length of the assembly. This direction is usually
defined as the x axis. The carriage is held in alignment by
two guide bars which have precision racks machined on their
surfaces. The racks provide motion through a rack and pinion
arrangement and rotation of the x axis knob as shown in Figure
19. Optical encoders in the carriage assembly provide
displacement measurements. The vertical column is constructed
and functions in a manner similar to the x axis carriage. This
direction is designated as the y axis. Motion in the z
direction is accommodated by the horizontal assembly mounted
on the y axis carriage as shown, and is constructed and
functions in the same manner as the other two axes.

A display unit, not shown, is provided and is
capable of indicating either in inches or millimeters. The CMM
is capable of 0.01 mm accuracy on all axis. The display output
can be zeroed for all axes simultaneously by depressing the

"ALL ZERO" pushbutton or each axis can be zeroed separately by
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pressing the appropriate axis "zero" pushbutton and contact

with a touch probe.

Y-axis receptacie

Z-axis receptacie

Figure 19. The Coordinate Measuring Machine (CMM)

The touch probe, illustrated in Figure 20, is
mounted on the end of the z axis of the CMM. The touch probe
tip is a machined sphere of 3.0 mm diameter. When the probe
comes in contact with an object, the indicator will illuminate
and the display unit readout will hold its present reading
until the probe is no longer in contact. When the display unit
"2ero" is set for a particular axis, the axis readout is
zeroed by touch probe contact. This is a useful feature
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Contact

///,Indicator

proba, TlP

Figure 20. CMM Touch Probe

because it provides a method of establishing a reference frame
external to both the manipulator and the CMM, which will be
described in the following sections.

A machined cube, similar to that illustrated in
Figure 21, was mounted in the common working volume of the
PUMA and the CMM. The faces of the cube were nominally aligned
with the axis of the CMM. A corner of the cube was chosen as
the reference point of the measurement system which eliminated
the need for absolute alignment of the cube faces with
parallel planes formed by the CMM x, y and z axis. Using the
touch probe zero reference feature, a reference point could be
established. For example, with the display unit ‘x-zero’
enabled, the probe can be placed near the y-z face of the cube
in close proximity to the reference corner and then slowly
moved in the x direction until contact is made and the x=0
reference established.
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Measurement
Reference
Frame

o

Figure 21. Measurement System Reference Cube

b. Manipulator End Effector

To calibrate a 30 parameter model of the PUMA 560
requires measurement of the pose of the end effector. Since
the CMM is only capable of position measurement, the end
effector must be of some known geometry such that orientation
can be calculated from a series of position measurements. The
end effector illustrated in Figure 22 was used in this
experiment.

The five machined tooling balls of radius 6.35 mm
are mounted orthogonally to the circular plate and post as
shown. The fabrication process guaranteed orthogonality of the
fixture, but the specific location of each tooling ball on its
respective axis was not guaranteed. These positions were
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Figure 22. End Effector for Full Pose Measurement

determined by a statis calibration with the CMM. The balls
were numbered one through five and their corresponding axis
and distance along the axis to the origin of the coordinate
frame are listed in Table 2. The lower flange is mated with
the PUMA end effector mounting flange.
2. Theory
a. Closed Chain Kinematic Model

The 1link parameter table listed previously in
Table 1, is used for manipulator transformations in all three
experiments. The only difference in the models for each

experiment is in the identifiable parameters of T,° and T.*.
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TABLE 2. END EFFECTOR BALL DESIGNATIONS AND DIMENSIONS

Ball # AXis Distance (mm)
1 z 51.111
2 X 50.740
3 Yy 50.703
4 -X 50.913
5 -y 50.988

Since the CMM is capable of fully defining its own coordinate
system, and with the use of the previously described end
effector, full pose measurement is possible and all 30
parameters of the model can be identified. Table 3 lists the
nominal values for the 12 parameters of T,° and T, and are
based on the nominal position of the measurement system
reference point, orientation of the CMM with respect to the
PUMA base frame and the nominal orientation of the end
effector. The values are typed in bold to emphasize that they
are all identifiable.
b. Developing Full Pose Data

To determine the pose of the coordinate frame
defined on the end effector first requires knowledge of the
coordinates of the center of the tooling balls with respect to
F". Recall the relationship given in Equation 1 between the

radius r of a sphere, its center at x,, y,, and 2z,, and the
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TABLE 3. KINEMATIC PARAMETER TABLE FOR T,° AND T.-

T, T,
¢ 180.0° 90.0°
0 0.0° 0.0°
¥ 90.0° 0.0°
X -394.0 mm 0.0 mm
y -383.0 mm 0.0 mm
z 474.0 mm 134.0 mm

coordinates of a point P on the surface of the sphere.

I = J(X-D,) ¢ + (yo-p,)? + (2,-p,)? (38)

Since measurement of points on the surface of the sphere are
possible with the CMM and the radius of the precision tooling
balls is known, then three unknowns remain in Equation 1. This
implies that a minimum of three measurements are required for
a fully defined problem involving three non-linear equations
with three unknowns. ZXSSQ can be employed for a solution with
the following problem statement:

- Minimize: T (f,(x))?

- over: X = [ X, Yor 2o |
where

- X0, Yo @and 2z, are the coordinates of the center of the
sphere
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i

- f,(x) = r-r |

- r is the radius of the sphere

- r, is calculated from Equation 1 for the i*" measurement of
a point on the tooling ball

Simulation and experiment showed that four measurements
provided sufficient accuracy.

With the coordinates of the center of the tooling
balls now available, determination of the pose can be
developed. Recall that the coordinates of a point P described

with respect to F* can be transformed into F" coordinates by

P, = T¥ P, (39)

Unfortunately, in this case, P, and P, are known and T, is the
unknown and the vector of the coordinates of P, can not be
inverted in order to solve for the transformation. However, as
described in Paul [Ref. 101, all the coordinates of an object
can be transformed from one frame to another simultaneously by
composing a matrix whose columns are the coordinates of the
object to be transformed and then pre-multiplying by the
transformation matrix describing the frame. Note that the
points are described by the usual augmented 4x1 vectors. Let
P, and P, denote two matrices composed of the coordinates of
the center of four balls, then

PH
p, P;

TS P,
Ty

(40)

It may not always be possible to measure four
balls for any given pose. However, with the given geometry, a
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fourth location, orthogonal to three measured balls, can be

synthesized by
p,= (P -P ) x (P, -P ) (41)

where the subscripts are not intended to imply any order or
particular ball, but only three different balls. This
calculation must be performed twice, once for points described
with respect to F* and once for points described with respect
to F°.
3. Simulation
a. Introduction

The calibration process is well suited to computer

simulation for the following reasons:

- Experimental data simulation, including noise injection,
is usually a straight forward process.

- The heart of the process is a numerical solution performed
by computer.

- Analysis of the results is easily performed on computer.

Several advantages are offered by first performing a computer
simulation:
- The identification algorithm can be tested.

- Trends in the accuracy of the solution when compared with
the number of measurements based on predicted noise level
can be identified.

- To some extent, the model can be validated during the
simulation. For example, if dependant parameters are
included in the model, the identification algorithm will
not converge to the correct solution since no unique
solution exists.
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The general

simulation

scheme

used

tor this

experiment is illustrated in Figure 23. The programs and their

associliated

following sections.

input and output files

are described

in the

JOINT “
\\\
~
% PUMA-VAR.DAT
- -~
| POSE a
7,4“ ~.
/ \
/ . RESULT.DAT
i
 INPUT.DAT | 106
] T .
N\, .
\, RESULT.DAT
\\ ' N
3 VERIFY

POSEVER.DAT

Figure 23. CMM Simulation Scheme

b. The Program JOINT

The program joint uses a Monte-Carlo method random

number generator to produce random sets of six joint variable

values. Three options for the range of joint motion for each

joint are available. Full range, one-half of normal range, and

one-quarter of normal range of joint motion can be selected

and this allows simulation of the effects of a limited working

volume.

The number of sets of joint angles is interactively

supplied to the program. The program writes the joint angle
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sets to a file titled PUMA_VAR.DAT. The program is executed
twice with the second output file renamed POSVER.DAT for use
in a verification program which will be described later.
c. The Program POSE
Program POSE reads a file, INPUT.DAT, containing

the following information:

- the previously described kinematic parameter table;

- the number of observations or measurements simulated:;

- the number of model parameters;

- length and angular offsets:;

- length and angular noise scaling constants.
The length and angular offsets are added to each of the
identifiable parameters so that a known model, different from
the nominal model, can be used to generate the simulated pose
measurements. POSE reads the random sets of joint angles from
the file PUMA_VAR.DAT. The joint variable angles are added to
the offset joint parameters and a forward kinematic solution
is calculated. The resulting solution, a 4x4 T® matrix based
on offset parameters, is stored in a file titled PUMA_POS.DAT
along with the corresponding set of joint variable data. Prior
to storage, noise can be injected into the 3joint variable
angles, and separately into the orientation and position
elements of T"*. The random noise is calculated by scaling the
output from a Monte-Carlo random number generator and then

added to the desired parameters.
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d. The Program CIDé6

The previously described file INPUT.DAT is read
and stored in CID6. The identifiable nominal parameters are
used to initialize the 2ZXSSQ x vector. The simulated pose
measurements and joint variable data are read from
PUMA_POS.DAT and stored in their respective arrays. ZXSSQ
parameters are initialized and then the subroutine is called.

ZXSSQ and the external subroutine PUMA_ARM
perform the identification process as described in the
Kinematic Model Identification Methodology .ection general
scheme, and summarized in Equation sets 36 and 37.

After termination of ZXSSQ, the calibrated 1ink
parameter table is written to a file titled RESULT.DAT. Up to
this point, the simulation version of this program is
identical to the experimental version. However, in the
simulation, the actual model parameters are known since they
were formed by adding a Kknown offset to the nominal
parameters. Therefore, the accuracy of the calibrated
parameters can be determined by again adding the offset values
to the nominal parameters and comparing these values to the
calibrated values. An rms value for both length and angular
parameters is computed and also written to RESULT.DAT along
with the residual from ZXSSQ.

e. The Program VERIFY
As a final test of the accuracy of this method,

the program VERIFY computes a forward solution based on the
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actual model parameters and the calibrated parameters, and
compares the resulting poses. To conmpute the actual pose,
VERIFY reads file INPUT.DAT and, as before, adds the length
and angular offsets to the appropriate kinematic parameters.
The calibrated kinematic parameter table is read from the file
RESULT.DAT. Two separate forward solutions are calculated
based on the two sets of kinematic parameters and sets of
random joint angles produced by JOINT and read from the file
POSVER.DAT described earlier. An average orientation and
pcsition error is calculated from the difference between the
two Tf matrices resulting from the forward solution
calculations.
4. Experiment
a. Data Acquisition

As noted in a preceding section on developing full
pose data, four measurements with the CMM are reguired to
locate the center of one tooling ball of the end effector.
Additionally, the centers of three tooling balls were required
to develop a full pose measurement T*. A program, CMMPOSE, was
written to convert the CMM position measurements into pose
measurements.

CMMPOSE is given three sets of four CMM position
measurements interactively along with the associated ball
numbers. A subroutine, BALL, calculates the center of each
tooling ball using the previously described algorithm. After

the center of each ball is calculated, the residual is
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displayed on the terminal and the user is prompted to either
keep or reject the value based on the residual. Residuals
greater than 10° were rejected and a second set of
measurements taken. This process allows the user to reject
poor data, probably caused by incorrect reading of the CMM
display or data entry errors. CMMPOSE then synthesizes a
fourth spatial position, composes the two position matrices
described earlier and then computes the measured pose. An

orthogonality check is performed by

n-o, n-a, o-a (42)

where n, o and a are vectors corresponding to the first three
columns of T* and "." is the dot product operator as before.
Since these vectors correspond to rotated coordinate axes then
their dot products should be zero. If the orthogonality check
passes, then the program stores the TFf matrix and the current
joint angle variables which are interactively input by the
user in a file PUMA_POS.DAT. Joint angle variables of the PUMA
560 can be obtained from the PUMA 560 console by typing
"where" on the keyboard.

Data was acquired by first zeroing the CMM at the
reference point as described earlier. The CMM was slowly
positioned so that light contact was made with the surface of
one of the tooling balls. Care was exercised to insure that
the direction of approach was nearly normal to the tangent
planes of the tooling ball and to the touch probe tip, at
their contact point. This reduces possible errors caused by
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controlled by the teach pendant.
operator individual positioning of each joint when operated in
Additional teach pendant modes are available for
positioning the end effector with respect to the manipulator tool

"joint mode".

deflection of the tip away from the point of contact. This
process is repeated with the position data supplied to
CMMPOSE, along with the corresponding joint variable angles.
Two operators, one operating the CMM and positioning the PUMA
with the teach pendant,* and another entering data at a
console can expect to make one full pose measurement in
approximately 10 minutes. Figure 24 illustrates the CMM ready
for a position measurement to be taken.
b. Parameter Identification and Verification

Program CID6 was modified as described earlier for
experimental data. A total of 44 poses were collected and the
entire set of poses were used to calibrate the PUMA. Table 4
lists the nominal and calibrated values of the kinematic
parameters. Length and angular parameters are reports in units
of millimeters and degrees, respectively.

Since the actual parameters are not known as they
are in the simulation, a program such as VERIFY cannot be
used. However, to better evaluate the accuracy of the
resulting calibration, the set of 44 poses and associated
joint variable angles were divided equally into two sets, S,
and S,. S, was used to perform a calibration. S, was then used

in a verification process in the following manner. Forward

'The PUMA 560 can be controlled by computer or manually

frame or base frame.
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Figure 24. Full Pose Measurement With the CMM

solutions using the 3Jjoint variable angles of S, and the
parameters calibrated with S, were calculated. The difference
between these calculated poses and the poses of S, provides a
good indication of the improvement in accuracy. An rms value

of 0.3 mm was calculated for the position error.
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TABLE 4. NOMINAL AND CALIBRATED KINEMATIC PARAMETERS

Parameter Nominal Calibrated
bu 180.0 179.9579
8, 0.0 1.5120
¥ 80.0 89.0219
Xy ~-394.0 -393.9838

7 =383.0 -405.0608
Zy 474 .0 466.8381
a, 0.0 -0.04923
a, -90.0 -89.9977

50, 0.0 -0.4888
a, 431.9 432.1216
a, 0.0 -0.0303
B, 0.0 -0.01515
&0, 0.0 -1.2069
d, 149.1 149.1455
a, -20.3 -19.2270
a, 90.0 90.0512
50, 0.0 ~-0.9144
d. 433.0 432.8899
a, 0.0 0.0040
Qa, -90.0 -89.9909
56, 0.0 2.2364
d, 0.0 -0.6629
a. 0.0 -0.0258
a. 90.0 89.9345
¢ 90.0 91.2400
0, 0.0 -0.0979
Vs 0.0 -0.0575
Xe 0.0 0.1863
Ve 0.0 -0.2329
2, 134.0 133.1557

B. THE MODIFIED LINEAR SLIDE METHOD

1. Introduction
In an experiment performed by Potter [Ref. 11], a PUMA
560 was successfully calibrated using a measurement system

referred to as a linear slide. The original experimental
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measurement system and the modification will be described in
the following sections. Although the method offered several
apparent advantages over the CMM calibration method, the
resulting accuracy was less by a factor of three. Two possible
explanations for the resulting loss of accuracy are increased
measurement noise due to loading effects and limited range of
joint rotation. The modification described in the following
was attempted to improve the range of joint motion and thereby
increase the overall calibration accuracy.
2. Physical Description of the Measurement System

In the original experiment, the vertical post (y and
z axis) of the CMM were removed. A plate was manufactured
which mates flush with the end effector flange of the PUMA and
flush with the X carriage of the CMM in the position vacated
by the vertical post. In this configuration, the orientation
of F* is fixed and the end effector restricted to linear
motion along the x axis of the CMM base. The experimental
setup is illustrated in Figure 25. As shown in the figure, the
CMM base was placed on a ramp. The ramp was necessary to
ensure adequate rotation of all PUMA joints. For example, due
to the design of the PUMA, if the slide was placed
horizontally on the table, essentially no rotation of the
wrist, joint 4, occurs during translation along the axis of
the CMM base. With no wrist rotation, the PUMA becomes a five
degree of freedom manipulator and the kinematic model must be

changed to reflect this apparent loss of a joint. Additional
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problems may be encountered with respect to identification
when joint rotation is limited and these problems will be
discussed 1in dgreater detail 1later. The position and
orientation of the ramp, as shown, offered reasonable joint
excursion for all joints as the end effector moved along the

slide.

Figure 25. PUMA Calibration with a Linear Slide
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mode,

To improve the range of joint rotation, a ball joint
was placed between the PUMA end effector flange and the X
carriage of the CMM. A drawing of the fixture can be seen in
Figure 26. In this configuration, the complete range of motion
of joints four, five and six could be achieved. Approximately
20 additional degrees of rotation could be achieved for joints
two and three. However, joint one rotation remained
essentially unchanged.

Note that for both methods, the end effector of the
PUMA is physically constrained, which requires the PUMA to be
placed in "free" mode.? Consequently, the PUMA must be
supported by an operator during calibration to prevent it from
rollapsing and damaging itself or the measurement system.

3. Closed Chain Kinematic Model

The closed chain kinematic model for the modified
linear slide method varies significantly from the original
linear slide method, which will be described in another
section of this thesis. As noted previously, the kinematic
parameters 1listed in Table 1 are used to describe the
manipulator. It is the parameters of T,° and T.” that must be
determined. First, consider the ball joint attached to the end

effector flange. A ball joint has three degrees of freedonm,

’Each joint of the PUMA is equipped with a coarse and fine

joint encoder and servomotor. Additionally, joints one, two and
three are equipped with brakes which prevent the manipulator from
collapsing when power is removed from the servomotors.
power is supplied to the joint encoders but no power is

supplied to the joint motors and all brakes are released.
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PUMA End Effector

[ 7077

7SS S S

CMMX Carriage

Figure 26. Modified Linear Slide End Effector

rotation about any set of three orthogonal axes placed at the
center of the ball. Ball joints are fixed in translation.
Arbitrary rotational motion and the fixed translation
relationship as observed through a series of measurements will
define a point in space, but no set of fixed axes can be
associated with this point. Therefore, F®* is assigned to the
point in space defined by the ball joint. Note that the ball
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joint must be "exercised" in all its degrees of freedom as
observed through a series of measurements in order for the
model to hold. Now as the point defined by the ball joint
translates along the axis of the CMM base, a specific axis
rather than a direction is defined. The location of F" is
arbitrarily defined by zeroing the readout on the CMM display
unit at some point along the axis. This zero point is fixed in
space with respect to the ball joint location. F* is then
defined to be this fixed point in space and the axis along
which the ball joint travels is associated with F* as well.
Summarizing, F* consists of a fixed point and an axis, and F*
consists of simply a point. As noted earlier, any three of the
six parameters of RPYT are sufficient to transform from a
frame to a point as long as one of the parameters is a
translation. The rotation Rot(¢,2.) and translations along x
and z were chosen for T.®!. Since F* is not fully defined, the
transformation T,° is developed by considering T, and then
inverting this transformation. In general, twc rotations are
required to align a particular frame axis with an arbitrary
axis in space. Three more parameters are then required to
transform to a point on the axis. The kinematic parameters for
T.° and T." are listed in Table 5 where the identifiable
parameters are typed in bold.

With these eight identifiable parameters added to the
18 identifiable parameters of the PUMA kinematic model, the

closed chain model consists of a total of 26 identifiable
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TABLE 5. KINEMATIC PARAMETERS FOR T,° AND T.®

T.° T.*
¢ 195.0° -41.0"
e -30.0° 0.0°
¥ 0.0° 0.0°
X -180.0 mm 78.0 mm
Yy ~380.0 mm 0.0 mm
z 360.0 mm 79.0 mm

parameters. With the PUMA end effector ball joint at some
position along the slide, the X, y and z position is known
with respect to F". The x coordinate is the displacement of
the ball joint from the zero reference, and the y and z values
are zero. Therefore, a minimum of 9 measurements are necessary
for a solution in the absence of noise.
4. Simulation
a. Introduction

In the CMM experiment, simulation data was easily
developed by generating a random set of joint variables and
computing the forward kinematic solution since the pose of the
end effector was not important. However, in this experiment,
for a given x coordinate, the end effector position is known

and the joint variable angles corresponding to that position
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must be determined. This is a special case of the so called
inverse kinematic solution. In general, there is no guarantee
that an analytic inverse solution exists. Furthermore, there
are problems of uniqueness and numerical instabilities that
arise from the cosecant and secant functions that are inherent
in the analytic expressions. Consequently, a numerical
approach is used in this case to compute the simulation data.

The position data can be generated by randomly
generating a value for x displacement along the slide. As
stated earlier, the y and z cumponents are zero. These values
become the "desired" end effector position. For a given set of
joint variables, a forward solution based on the given model
can be calculated resulting in an end effector position. The
difference between the calculated end effector position and
the "desired" position, becomes a set of error functions to be
minimized. The problem statement in a form suitable for ZXSSQ
implementation is:

- Minimize: (f,(x))> + (f,(x))> + (f,(x))?
- Over: x = [8,, 6,, 8,, 6,, 6., 6,]

where £, 1is the difference between the calculated and
"desired" x coordinate of the end effector, and f, and f, are
the calculated y and z coordinates.

The suite of simulation programs and their
interaction is similar to the CMM simulation scheme and is
illustrated in Figure 27. Program listings are¢ found in

*ppendices A, B and C.
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Figure 27. Modified Linear Slide Simulation Scheme

b. The Program BLINSC

BLINSC reads in the kinematic parameter table and
additional information as described in the CMM experiment from
a file titled INPUT.DAT. Known length and angular offsets are
added to the parameters. The x vector described in the
preceding paragraph 1is initialized. The x vector can be
initialized to all zeroes or may be initialized such that
solutions are "driven" to a particular arm configuration.? The

program then generates a random value of the slide position,

’Referring back to Figure 16, the base of the manipulator is
sometimes referred to as the waist and Joint 1 retation would be at
the waist. Joint 2 then corresponds to a shoulder joint. Joint 3
is referred to as the elbow joint. With this terminology, when
viewing the robot, four possible arm configurations are possible:
"lefty-elbow up", "lefty-elbow down", "righty elbow up", and
"righty-elbow down". The manipulator is shown in "lefty-elbow down
configuration in Figure 24.
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X coordinate of the end effector, and the ZXSSQ option
parameters are assigned appropriate values. ZXSSQ is then
called to compute the inverse kinematic solution as described
in the preceding section. A modified version of the subroutine
PUMA_ARM utilized previously in the program CIDé6 is then
incorporated in the program as the 2XSSQ user supplied
subroutine for calculation of the forward solution and
evaluation of the error functions. Upon termination of ZXSSQ,
the program provides capability for noise injection on both
the three coordinates and the joint variables. The simulated
joint variables and end effector coordinates are then written
to a file titled PUMA_POS.DAT. The preceding process is
repeated until the desired amount of simulated data has been
generated.
c. The Program BID6

The only significant modification to previously
described versions of ID6 is to the 2ZXSSQ user supplied
subroutine PUMA_ARM. Additionally, modifications due to the
changes in the number of identifiable parameters of the model,
such as the size and makeup of the x vector, are incorporated
into BID6é. The modification to PUMA_ARM is similar to that
used in BLINSC. Since only the position of F® is identifiable,
only three error functions can be calculated for each
measurement set which, in this case, is the measured x, y and
z position and the associated joint variables for that

position. The error functions are the difference between the
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calculated position of F* based on the current value of all
parameters and Jjoint variables and the measured position.
After execution of 2XSSQ, the calibrated parameters are
written to a file RESULT.DAT as before. Additionally, the
known position error only is calculated and written to
RESULT.DAT.
d. The Program BVERIFY

As a final test of the accuracy of this method,
the program VERIFY described for the CMM experiment was
modified. BVERIFY computes a forward solution based on the
actual model parameters and the calibrated parameters, and
compares the resulting poses. To compute the actual pose,
BVERIFY reads file INPUT.DAT and, as before, adds the length
and angular offsets to the appropriate kinematic parameters.
The calibrated kinematic parameter table is read from the file
RESULT.DAT. Two separate forward solutions are calculated
based on the two sets of kinematic parameters and sets of
random joint angles produced by BLINSC and read from a renamed
file POSVER.DAT. An average position error is calculated from
the difference between the position entries of the two T¢
matrices resulting from the forward Kkinematic solution
calculations.

5. Experiment
a. Data Acquisition
With the CMM base rigidly affixed to the ramp and

the ramp secured to the table, the upper ball joint flange is
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bolted to the PUMA end effector flange and the end effector
positioned above the slide by use of the teach pendant. With
one operator supporting the PUMA, a second operator places the
manipulator in "free" mode. The manipulator is then maneuvered
into position so that the lower ball joint flange can be
bolted to the X carriage of the CMM. Once the lower flange is
bolted, the carriage is placed at a predetermined location and
the display unit readout zeroed. This location with respect to
approximate location of the base or zero frame of the
manipulator is measured and recorded for incorporation into
the kinematic parameter table along with the ramp srientation
and the ball joint position and orientation with respect to
frame 5 of the manipulator.

At the 2zero position and nine other positions
located at approximately 80 mm intervals, four separate sets
of measurements were recorded. The position for each set
remained fixed by tightening the provided thumbscrew onto one
of the guide bars. The manipulator was then maneuvered into
four widely varying configurations and the joint variables for
each configuration recorded. After completion of the 40
measurements, the end effector was unbolted and then joint one
was rotated to the other arm configuration. A second set of
measurements in the second arm configuration were recorded.

b. Parameter Identification and Verification
The entire set of 80 measurements were then used

by an experimental version of BID6 for actual parameter
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identification. Table 6 1lists the nominal and calibrated
parameters for this method. As before, length and angular
parameters are reported in units of milli-meters and degrees,
respectively. As in the CMM experiment, the data was then
split into two groups for verification. The resulting
positional error was 0.744 mm.

TABLE 6. NOMINAL AND CALIBRATED KINEMATIC PARAMETERS

Nominal Calibrated
v 30 195.0 194.903
6, -30.0 -30.887
X, -180.0 -179.567
Vi -380.0 -378.528
2, 360.0 355.635
a, 0.0 -0.096
a, -30.0 -89.823
56, 0.0 -0.340
a, 431.85 431.123
a, 0.0 0.580
B, 0.0 0.485
50, 0.0 -0.993
d, 149.09 146.028
a, -20.33 -20.255
a, 90.0 90.415
50, 0.0 -1.089
d, 433.0 434.095
a, 0.0 0.074
a, -90.0 -90.244
50, 0.0 1.293
d, 0.0 -0.863
a, 0.0 -0.175
Qa, 80.0 89.905
®e -41.0 -41.355
X 78.0 78.404
Z; 79.0 79.203
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C.

12]

THE WIRE POTENTIOMETER METHOD
1. Introduction
Calibration of PUMA 560 was performed by Driels [Ref.

utilizing an instrument referred to as a ball bar. The

instrument consisted of a rigid bar of known fixed length with

a ball joint attached at each end. One end of the ball bar was

affixed to a work surface within the working volume of the

PUMA. The other ball joint was attached to the end effector

flange of the robot. The method offered several advantages

including:

The

the

precise length measurements
essentially no measurement noise
ease of fabrication
low cost
major disadvantages with the method are:

Calibration can only be performed on a manipulator with
a "free" mode of operation.

The method requires at least two operators so that the
manipulator is supported while collecting data.

The end effector, and hence data collection, 1s limited
to the surface of a sphere of ball bar length radius
which may limit its applicability in certain
environments.

The wire potentiometer method was developed to retain

advantages of the ball bar method while overcoming the

disadvantages which arise from constraining the manipulator

end

effector.
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2. Physical Description of the Measurement System
a. The Wire Potentiometer

The wire potentiometer used in this experiment is
a Celesco model, DV301-0050-111-II10, and is illustrated in
Figure 28. This model 1is designed to produce linear
displacement and velocity measurements with a maximum travel
of 50 inches. The calibration process is only concerned with
displacement measurements which are transduced by means of a
proportional resistance from the wiper arm of 0-500 0

potentiometer.

Figure 28. Celesco Wire Potentiometer

b. Fixture Design for Measurements in a Volume
As noted above, the wire potentiometer was
designed for measurement of linear motion. To effectively

77




utilize this device 1in a calibration application, it was
necessary to design a fixture capable of measuring distances
within a working volume. Several factors were considered when

designing the fixtures:

simplicity

~ low measurement noise

prevention of wear and deformation of the wire
- mathematic modellirg
The fixture designs for the measurement system base and end

effector are illustrated in Figures 29 and 30, respectively.

-

L |

Figure 29. Measurement System Base

All parts were constructed from aluminum. The
funnel shaped ports were cut with a carbide tipped half-inch
radius beading router bit. The known radius of curvature of
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Figure 30. End Effector Fixture

the funnel surface can easily be incorporated into a
mathematical model, as well as reduce the possibility of wire
deformation. The funnel surfaces are highly polished, which
reduces both abrasive wear on the wire and measurement noise
by allowing the wire under tension to align itself in a
minimum length configuration. A detailed description of the
geometry and wire length calculation is provided in the
following section. A tradeoff between smooth travel and
minimal play at the throat of the funnel was made when

determining the internal passage diameter.
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3. Theory
a. Closed Chain Kinematic Model

As 1in the two preceding experiments, the
manipulator kinematic parameters are the same as those listed
in Table 1. The measurement system kinematic model must be
developed so that the makeup of F¥ and F* are known which then
fixes the identifiable parameters in T,° and T.*. If the wire
had been "perfectly flexible in bending", then instead of the
funnel shaped port, the wire could have been passed through a
fixture with a port of essentially equal diameter as the wire,

as illustrated in the planar view of Figure 31.

Wire
Fixture
— E /\ ‘ \i R
/ — ,,f NN

Figure 31. Fixture Design for a "Perfectly Flexible in
Bending" Wire

80




In this case, the model resembles the ball joint
model described previously. Point O in Figure 31 is fixed in
translation but the wire is "free" to assume any orientation
above the fixture. Point O could then be defined as the
measurement system reference point. With a similar fixture
mounted on the end effector flange of the PUMA, a second point
would be defined. This point becomes the origin of F*.
Summarizing, F* and F* consist of well defined points in space
but no axes can be associated with the measurement system. The
same concepts hold for the funnel shaped ports with the
defined point now 1located at the throat of the funnel.
However, due to the axial symmetry of the funnel, an axis can
be associated with the F" and F* as illustrated in Figure 32.
This theoretically identifiable axis was not included in the
model wused in this experiment based on the following
assumptions:

- The z axis illustrated in Figure 31 for the measurement
system base and end effector fixtures would be nominally
aligned with the 2z, and z, axis respectively.

- The small radius of curvature would make identification of
any nonalignment unreliable.

- Any errors induced would be sufficiently small that they
would not be discernible from normal measureme:lt noise.

Without the axes included in the model, three parameters are
identifiable in both T,° and T.®*. As stated before, any three
of the six parameters in each transformation can be used as
long as one parameter is a translation. The nominal values of

the parameters chosen for identification are typed in bold in
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™

Figure 32. Axis Defined by Funnel Geometry

the kinematic parameter table, Table 7. Recall that although
an independent set of axes are not defined at either F* and F%,
by virtue of the transformations, a dependant set of axes is
defined and can be referenced.

As developed, the total model consists of 24
identifiable paiameters. For a given configuration of the
manipulator, the measured quantity is the 1length of wire
between the origins of F* and F*. Therefore, in the absence of
noise, a minimum of 24 measurements are required to adequately

define the problenm.
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TABLE 7. KINEMATIC PARAMETER TABLE FOR T,° AND T.*

T,° T.F
¢ 0.0 -135.0
6 0.0 0.0
Y 0.0 0.0
X -75.0 -76.2
y -711.0 0.0
z 552.0 76.2

b. cCalculation of Wire Length from Kinematic
Parameters
During each iteration in the parameter
identification algorithm, a "predicted" value of the wire
length based on the current value of the parameters must be
computed for comparison. The position and orientation of the
end effector fixture reference frame with respect to the
measurement frame is provided, as before, by the Tf matrix.
As noted earlier, the wire under tension will
align itself in a minimum length configuration between the
base fixture and the end effector fixture. In this
configuration, the wire departs the funnel surfaces

tangentially and in a direction such that the tangent to
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tangent distance is minimum. Figure 33 illustrates the wire

configuration for an arbitrary manipulator pose.
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Figure 33. Drawing of Base and End Effector Fixture

Let M and E designate the origins of the
measurement and end effector frames respectively. Define TM
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and TE as the points of departure of the wire from the
measurement base fixture and end effector fixture
respectively. Note that the wire departs at points TM and TE
tangentially from the funnel surface and will be referred to
as the tangent points for the remainder of this discussion.
Additionally, define the z axes for F" and F* to lie along the
axis of the funnel as shown previously in Figure 32. The
complexity of describing the wire path can be simplified
somewhat by noting the following feature. If the wire path is
projected onto the x-y plane of F* and F* then, as is shown in
Figure 34, the projected paths M-TM-TE and E-TE-TM in each
frame’s x-y plane is a straight 1line. 9nly in unique
configurations, namely each frame’s z axes intersect, will the
projected path M-TM-TE-E form a straight line.

The geometry described in this paragraph is
identical for either frame so without loss of generality F* is
described. Let v define the axis in the xy plane of F* which
describes the line of action of the wire path projection as
shown in Figure 34. Figure 35 illustrates the geometry as
viewed in the vz plane of the frame. If the x and vy
coordinates of the tangent point TM (tm, and tm,) in Figure 35
are known, then tm, is fixed by the known radius of curvature.
Furthermore, the angle 6 can be determined which then results
in a solution for arc length O-TM. Additionally, the angle ¢
can be calculated which then fully defines the direction of

line segment TM-TE. From this analysis, it is clear that the
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Figure 34. Projected Paths M-TM-TE and E-TE-TM

wire length solution is a function of the x and y components

of the tangent points of both fixtures.

L=1L(tm, tm te,, te,) (43)

y! y

Although an analytical solution to this problem
most likely exists, it would clearly reduce to solving 4 non-
linear equations with the 4 unknowns ultimately requiring some

numerical technique to obtain a solution. Consequently, an

optimization scheme was chosen for the solution method at the
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Tn(tmx,tny.Tnt)

Figure 35. V-Z Planar View of a Fixture

outset. The general approach was to develop a unit vector for
the tangential direction based on a variable x and y position
in each fixture’s reference frame. The unit vector calculated
in the end effectors reference frame is then transformed into
measurement frame coordinates. These vectors are designated u,
and u, and their component by component sum will be zero when
the wire is in a minimum length configuration. The three sums
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form three functions to be minimized. However, as illustrated
with the simple example in Figure 36, alignment of these unit
tangent vectors alone does not sufficiently constrain the
problem. The additional constraint required is that the
tangent to tangent length TM-TE be minimized as well. A fourth
function consisting of the tangent to tangent length could
then be included for minimization. However, as stated thus
far, the problem is not proportional with three of the
functions ideally converging to 2zero, and the fourth
converging to a comparatively larger number. Scaling the
length function could reduce this problem to an acceptable
level. However, the following method eliminates all
disproportionate aspects between the functions to be
minimized.

Let u,, be the vector describing the line of action
between TM and TE as illustrated previously in Figure 36.
Calculation of wu,, is easily accomplished utilizing the
coordinates of TM, and TE,. Now the component by component
difference between u, and u,, will be zero when the wire is in
a minimum length configuration. These component by component
differences can then form three additional functions to be
minimized. Note that the difference between u, and u,, would
have worked equally well. In normal problem statement form:

- Minimize: T(f,(x))* 1i=1,2,++.,6
- Over: x = [™X¢,"Ye, "Xur "Yu ]

- f£f,, £, and f, are the component by component sum of u, and
u,
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Figure 36. Possible Solution to Alignment of Tangent Vectors

- £f,, £, and f, are the component by component difference
between u, and u,,

- Recall that the superscripts on the elements of x refer to
which frame the variables are associated with and the
subscript refers to which frame their numerical values are
referenced to.

With a numerical solution obtained, the wire length can easily

be computed from the components of x.
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To aid convergence, a good initial estimate of the
x and y coordinates for each frame are determined in the
following manner. A unit vector v directed from the
measurement frame origin to the end effector frame origin is
calculated from the x, y and z position elements of the T*
matrix. The initial x and y values in the measurement frame
are chosen as the funnel radius times the i and j components
of this unit vector. A unit vector directed from the end
effector reference frame origin to the measurement system
reference origin is simply -v. However, this vector must be
described in the end effector’s reference frame. Calculation

of -v, is accomplished by Equation 44.

-Ve = (TF) 1 (-V,) (44)
As in F¥, the initial x and y values in F* are calculated by
multiplying the 1 and j components of =-v, by the funnel
radius.

Given the initial or updated x and y coordinates
in frame coordinates, calculation of the tangent vector with
respect to that frame proceeds as follows and is identical for
both frames. As before, define an axis v that lies in the
frames x-y plane and intersects the point defined by the
current values of x and y and the frames origin. Figure 37 is
a view of the plane formed by the v and z axis. Point P has
coordinates (x,y,0) and point O is the frame origin. The

distance from O to P is found from Equation 45.




Figure 37. Second View of v-z Plane

0P = Jxity- (45)
The length of line segment 0OQ is equal to the radius, r, of
the funnel. Calculation of the side PQ of the right triangle

PQS is accomplished with Equation 46.
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?D:I—EP—I (46)

Since the length of SQ is the radius, then length SP is
calculated by Equation 47 and this value corresponds to the z

component of the current tangent point.

[ %]
r)‘

SP = Jyr¢ - PO (47)

The angles ¢ and 8 are calculated by

¢ = sin? t%?d
T (48)
B = sin?(£2)
e

The angle 6 will be used at convergence to calculate arclength
0S. The unit tangent vector, either u, or u, is calculated as

shown in Equation 49.

u=xi+yj+573tan¢k (49)

Vx< + y< + (OPtand) -

4. Simulation
a. Introduction
The general simulation scheme is similar to the
preceding calibration methods. A flowchart of the scheme is
illustrated in Figure 38. The programs are listed in
Appendices D, E and F. Prior to a description of the main
programs in the simulation process, the subroutines LENGTH and

MINLENTH which calculate the wire length will be discussed.
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Figure 38. Wire Potentiometer Simulation Flowchart

b. Subroutines LENGTH and MINLENTH

The subroutine LENGTH and its subroutine MINLENTH
are used 1in each simulation program as well as the
experimental version of WID6 and the program COMP which is
used to verify the accuracy of experimentally calibrated
parameters. The purpose of LENGTH is to calculate the wire
length based on the T® matrix supplied by the calling progran.

LENGTH initializes the ZXSSQ option parameters and
calculates x,, the 2ZXSSQ variable vector, from the current
frame origins as described earlier. Upon termination of ZXSSQ,
the overall wire length is calculated and passed back to the
calling program. In program WID6, LENGTH is called from the
subroutine PUMA_ARM which is similar to previously described
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versions. Note that this represents an inner optimization
loop. Since FORTRAN is not a recursive language, a renamed
version of the 2ZXSSQ source code was required so that the
inner loop optimization could be performed.

MINLENTH is the "user supplied subroutine" called
by ZXSSQ. MINLENTH is passed the current value of x. The
tangent vectors u, and u, are calculated as well as u,,. The
coordinates of u, are transformed into F* coordinates and the
six error functions are formed. The tangent to tangent length
and the elevation angles 6 which are necessary for the total
wire length calculation are computed and passed to LENGTH upon
ZXSS5Q convergence.

c. The Program Wire

The function of the program WIRE is to generate
simulated wire length and joint variable data. In a general
sense, it performs similarly to the previously described
programs JOINT and BLINSC. The nominal Kkinematic parameter
table, along with length and angular offsets, length and
angular noise 1levels, and the total number of simulated
measurements to be generated, are read from the file
INPUT.DAT. The length and angular offsets are added to the
corresponding nominal parameters. These values will be used in
forward kinematic solution calculations. Comparable to BLINSC,
data simulation will require an inverse kinematic solution.
Unlike BLINSC, the end effector pose must be constrained to

realistically match the actual experiment. In other words, as
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viewed from the end effector frame, the measurement systemn
base frame must lie above the x-y plane of FF.

The first step in the process is to establish the
origin of F*. This random point is developed using a spherical
coordinate approach where random values of ¢, 6 and L,
illustrated in Figure 39, are constructed from scaled values
output from a Monte-Carlc random number generator. Note that
¢ was maintained in the range 0°-80° and L was maintained in
the range of 100-1000 mm. The coordinates ¢, 8 and L are then
converted to cartesian coordinates in the usual way. These
three values become part of the "desired" result of the

forward kinematic solution.

Xp

Figure 39. Calculation of the Origin of F*

95




To ensure that the 2z axis of F* was in a feasible
direction, constrained random values of the z axis direction
cosines were incorporated into the "desired" solution. This is
accomplished by first calculating a unit vector v directed
from the origin of F* to the origin of F* in F* coordinates.
Note that if these values were then used as the direction
cosines for the z axis in Tf, then the z axis would “point"
directly at the origin of F". These direction cosines are
randomly adjusted about this value by a maximum range of +30°.
Denoting u as the unit vector made up of the perturbed
direction cosines, feasibility is checked by computing the dot
product of u and v which must be less than 90°. These six
"desired" values correspond to the last two columns of the T¢
matrix and are passed via common block to the subroutine
PUMA_ARM.

The ZXSSQ vector x, is then initialized along with
the ZXSSQ option parameters. Subroutine PUMA_ARM is called by
Z2XSSQ to compute the error functions. As before, PUMA_ARM
computes the forward kinematic solution, T:, based on the
current Jjoint variables contained in the vector x. The
difference between the upper right 3x2 elements of the
calculated T* matrix and the "desired" values form six
functions to be minimized.

After ZXSSQ termination, the residual is checked
to ensure validity of the calculated pose. If the solution is

valid, the wire length is calculated by a call to subroutine
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LENGTH. Random noise can be injected into the wire length and
joint variables at this point. The wire length and joint
variables are then written to a file PUMA_SOLN.DAT. The
process is then repeated until the requisite number of
simulated measurements have been generated.

d. The Program WID6

WID6 performs in a 1like manner to preceding
versions of ID6. Minor changes have been made to reflect the
differences in the identifiable parameters. The only
significant difference is in the subroutine PUMA_ARM.

In this experiment, the measurement consists of
the length of wire between F" and F®* which is a function of the
end efrector pose and the fixture geometry. For each call to
PUMA_ARM, a forward solution 1is calculated. With T*
calculated, the subroutine LENGTH is called and a
corresponding wire 1length is calculated as described
previously. The difference between the calculated wire length
and the simulated data wire length form a single error
function. This process is repeated until N error functions
have been calculated where N is the number of measurements in
the data set.

After ZXSSQ termination, the identified parameters
are compared, as before, with the known parameters and these

parameters and the rms position error are written to a file

RESULT.DAT.




e. The Program WVERIFY

WVERIFY performs similarly to previous
verification programs. The kinematic parameter table is read
from the file RESULT.DAT. A second set of simulated 3joint
variable and wire length data, generated by WIRE, is read from
the file POSVER.DAT. A forward solution and then the
corresponding wire length is calculated for each set of joint
variables. The difference between the calculated lengths and
the corresponding simulated length measurements is computed.
An rms value for all errors is calculated and written to the
terminal screen.

5. Experiment
a. Calibration of the Potentiometer

A model SE-2000 signal conditioner and digital
display unit was provided with the wire potentiometer.
However, the digital display was only capable of 0.01 inch
accuracy which was inferior to the desired accuracy. The unit
does provide a conditioned 0-10 volt analog output for
displacement measurement. It was hoped that the potentiometer
was capable of greater precision so it was calibrated in the
following manner.

The end effector fixture was mounted in the chuck
of a lathe and the base fixture mounted to the lathe carriage.
The fixtures were aligned so that the wire was normal to both
fixture upper surfaces as illustrated in Figure 40. The

carriage was then positioned so that the upper fixture
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surfaces were 1in 1light contact. The potentiometer was
connected to the SE-2000 and the SE-2000 analog output was
connected tn» a 5 1/2 digit DVM. The "zero" was adjusted on the
SE-2000 for a zero volt reading on the DVM. Digital display,
accurate tc 0.001 mm, of lathe carriage travel is provided by
an Acurite III display unit. Voltage and length readings were
recorded at 50 mm intervals. Figure 41 is a Displacemnt vs
Voltage plot of the data. As shown, a linear relationship
results and Equation 50 is the linear best fit of the data.
Figure 42 is a plot of the deviation of the data from the
linear best fit over the length of the wire. The rms error in
the deviation from Equation 50 is 0.22 mm. Although the
potentiometer was not nearly as precise as desired, simulation
with this level of noise still demonstrated robust convergence
with the overall error approaching the accuracy of the
measurement device which is less than the repeatability of the

PUMA.

L = 0.12659V - 0.490203 (50)

b. Data Acquisition
A short data acquisition program was written to
convert voltage measurements to millimeters using the linear
relationship derived from the potentiometer calibration. This
file then stored each measurement along with the corresponding

joint variable data in a file titled PUMA_POS.DAT.
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Figure 40. Calibration of the Potentiometer

The base fixture was secured to the work table as
illustrated in Figure 43. As in the calibration setup, the
potentiometer was connected to the SE-2000, and the analog
output of that unit was connected to the 5 1/2 digit DVM.
After sufficient equipment warm-up and with the end effector
fixture resting on the base fixture, the voltage output was
adjusted for a zero reading. The end effector fixture was then
bolted to the PUMA. The PUMA was placed in a wide variety of
joint variable configurations and data recorded. The length of
the wire was sufficient to enable the PUMA to be placed in all
four "arm configurations". 110 measurements were taken in

approximately four hours by one operator entering data at a
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Figure 41. Plot of Wire Potentiometer Calibration Data

computer terminal and operating the PUMA with the teach
pendant.
c. Parameter Identification and Verification
The entire data set was used for parameter
identification in a version of WID6 modified for experimental
data. The nominal and identified kinematic parameters are
listed in Table 8 where the length and angular values are in

units of millimeters and degrees, respectively.
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Table 8. NOMINAI. AND CALIBRATED KINEMATIC PARAMETERS

Nominal Calibrated
Xy -75.0 -75.118
Vu -711.0 -724.381
2, 552.0 544.183
a, 0.0 -0.489
a, -90.0 -89.944
§0, 0.0 -0.523
a, 431.85 431.958
a, 0.0 -0.023
B, 0.0 -0.037
56, 0.0 -1.272
d, 149.09 149.340
a, -20.33 -18.735
Qa, 90.0 90.125
66, 0.0 -0.906
4. 433.0 432.726
a, 0.0 0.229
a, -90.0 -90.263
50, 0.0 1.248
4, 0.0 -0.532
a. 0.0 0.136
a. 90.0 90.254
[ -135.0 -131.712
Xe -76.2 ~-75.914
Z, 76.2 76.392

The data was then divided into two set’s of equal
size. The first set of data was used in WID6é for parameter
identification. The second set of data was used for
verification by computing a forward solution based on the
identified parameters and the second sets joint variables. A
set of wire lengths was calculated based on the forward

kinematic solution results. These wire lengths were then
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compared with their corresponding measured values and an rms

error of 0.490 mm was calculated.
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IV. DISCUSSION OF RESULTS

A. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS

All three calibration techniques resulted 1in an
improvement in the accuracy of the PUMA 560. The resulting
accuracy for each method is listed in Table 9.

Table 9. CALIBRATION ACCURACY

COORDINATE MODIFIED LINEAR WIRE
MEASURING MACHINE SLIDE POTENTIOMETER
0.3 mm 0.744 mm 0.490 mm

Only the 18 parameters of the PUMA are common to each
method’s closed chain kinematic model. The calibrated values
for each method along with the nominal parameters are listed
in Table 10 where the length and angular parameters have units
of millimeters an.' degrees respectively. It should be noted
that since the actua} values are unknown, little can be gained
by direct comparison of parameter values. Additionally,
repairs were affected to the manipulator between the CMM
experiment and the other two methods. The abbreviations CMM,
MLS and WP are used in the column headings for the Coordinate
Measuring Machine, Modified Linear Slide and Wire

Potentiometer methods respectively.
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TABLE 10. CALIBRATED PARAMETERS
NOMINAL CMM MLS WP
a, 0.00 -0.045 ~0.096 -0.489
a, -90.00 -89.968 -89.823 -89.944
§0, 0.00 -0.48%9 -0.340 -0.523
a, 431.85 432.122 431.123 431.958
a, 0.00 -0.030 0.580 -0.023
B, 0.00 -0.015 0.485 -0.037
50, 0.00 -1.207 -0.993 -1.272
d, 149.09 149.146 146.028 149.340
a, -20.33 -19.227 =20.255 -18.735
a, 90.00 90.051 90.415 90.125
50, 0.00 -0.914 -1.089% ~-0.906
d, 433.00 432.889 434.095 432.726
a, 0.00 0.004 0.074 0.229
a, -90.00 -89.991 =-90.244 -90.263
56, 0.00 2.236 1.293 1.248
d, 0.00 -0.663 ~0.863 -0.532
a. 0.00 -0.026 =-0.175 0.136
L____O. 90.00 89,934 89.905 90.254
Since all methods resulted an accuracy

approaching or equalling the repeatability of the manipulator,

other factors

compariso

on

added

significance

when

making

ns. Some of these factors are somewhat qualitative

and they are discussed in the following paragraphs.

Although the CMM base was used for the Modified Linear

Slide method,

assunmed

could be

manufactured with
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accuracy and characteristics but at a lower cost. With this in
mind, the CMM is clearly the most expensive method of the
three. The Wire Potentiometer Method is certainly the least
expensive.

The compact size of the Wire Potentiometer fixtures make
them very portable and durable and hence, well suited to an
industrial enviroment. The CMM on the other hand, is clearly
better suited for laboratory applications. The Linear Slide,
as it did in terms of cost, would seem to fall somewhere
between the other two methods. Although a rugged device could
be designed, the need for a stiff slide would result in a loss
of portability. A stiff slide is necessary to reduce noise
induced by flexure under the weight of the manipulator.

Both the CMM and Wire Potentiometer methods are capable of
measurements of the PUMA in all manipulator "arm
configuraticns" without any additional <considerations.
Conversely, great care must be exercised when switching
between arm configurations when calibrating with the Modified
Linear Slide Method since the end effector must be detached.

Even with automated data acquisition of PUMA joint
variable data and CMM position data, it would still require
one operator nearly 10 minutes to measure one pose utilizing
the CMM. Two operators are required for the Modified Linear
Slide Method due to the need to support the PUMA while in Free
Mode. Automated data acquisition would greatly reduce the

overall time required for this method. The wire potentiometer
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method offers significant advantages 1in terms of data
acquisition as well. Automated data acquisition would
significantly reduce the amount of time required to gather
data. Additionally, the manipulator could be programmed to
move through a series of predetermined poses thus enabling the
entire process to be automated. The resulting calibration
would require only one operator about ten minutes tn both set
up and dismantle the system. Furthermore, an extensive data
base could be collected in a manner of minutes without
operator intervention.
B. GENERAL OBSERVATIONS FROM EXPERIMENTS

The original Linear Slide method seemed to offer a number
of advantages over the CMM method. Since the end effector is
fixed in orientation, six "knowns" are acquired for each
displacement measurement. In contrast, the CMM method requires
12 position measurements to "measure" full pose or acquire 6
knowns. Since each position measurement is made with the same
accuracy in both methods, it would seem that the Linear Slide
method offers a significant reduction in measurement noise.
However, the resulting calibration accuracy using the Linear
Slide was three times less than achieved with the CMM method
[Ref. 13)]. This "loss" of accuracy was attributed to
additional noise induced by internal loading effects, slide
flexure under the manipulator’s weight and insufficient joint

variable excitation.
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Two methods were considered for improving the joint
excitation. Appendix G describes a method for determining an
optimum position and orientation of the slide. Optimum in this
case is defined as a slide position and orientation which
results in maximum excursion of all six joint variables as the
end effector travels along the slide length. The Modified
Linear Slide method offered a significant improvement in joint
variable excitation although this method results in a
reduction by one half in the number of knowns for each
displacement measurement. Although this modification resulted
in improvement in the calibration accuracy, the accuracy was
still 1less than that achieved with the CMM method for
comparable sized data sets. This recduction in accuracy may be
a consequence of mechanical noise as suggested previously.
However, simulation studies by Pathre and Driels [Ref. 14]
suggest that trajectory or pathlike motion of the end effector
may result in a less accurate calibration than if random
motion of the end effector is utilized. This is an issue for
further research.

The Wire Potentiometer method would seem to support the
benefits of both large joint excitation and "“random" pose
measurements. Despite its noisy <characteristics and
comparatively lower accuracy, a more accurate calibration was
achieved. This suggests that a tradeoff may exist when
considering mechanical constraining type measurement systems.

In general, additional end effector constraints increase the
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number of knowns for each manipulator pose as well as a
reduction in noilse. However, the additional constraints
frequently result in a loss of some "dimension" of the problem
and a subsequent loss in calibration accuracy.
C. OBSERVATIONS REGARDING MEASUREMENT SYSTEMS WITHIN CLOSED

CHAIN KINEMATIC MODELS

1. INTRODUCTION

As stated earlier, the number of identifiable

parameters, N, in a "complete'" manipulator kinematic model is

given by Equation 31 which is repeated here

N = 2P+4R+6 (51)

where P is the number of prismatic joints and R is the number
of rotary joints. For the PUMA 560, N is equal to 30. This
model assumes a reference frame external to the manipulator.
The advantage of this model is that it offers a convenient
method of referencing other objects and tools within the
working volume of the manipulator. However, a closed chain
kinematic model incorporating a measurement system or device
may not provide sufficient information to fully define a
"complete" model. Define is used in the sense that all the
parameters of the model are identifiable. In general, a
manipulator kinematic model incorporating a measurement system
will have no more than N identifiable parameters and clearly
a model with greater than N parameters contains parameters
unnecessary for "completeness".
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The process of determining the number of identifiable
parameters in models incorporating a variety of measurement
systems all to frequently results in an iterative process. For
the PUMA and a particular measuring system, the process
started with a 30 parameter model followed by simulation
studies which resulted in non-convergence if in fact
dependencies existed between parameters. The model was then
redefined by eliminating parameters based on the numerical
results, "first principles" analysis or intuition. Further
simulation studies were then conducted until the correct model
was developed. Clearly, a systematic approach, such as
Denavit-Hartenburg is to manipulator kinematics, would be
advantageous for modelling closed 1loop kinematic chains
incorporating different measurement systems.

The ambiguities which can exist are strictly
attributable to the measurement system. If the remainder of
the model is properly defined, then much of the difficulty is
eliminated. The general process is illustrated in Figure 44.
The process consists of properly defining a kinematic model of
the manipulator. Proper is used in the sense that the model
eliminates possible parameter dependencies in transformations
to frames external to the manipulator. From this point
forward, the term "manipulator kinematic model" or simply
"manipulator kinematics" will refer to such a model. The
proper kinematic model, in the same sense as before, of the

measurement system must then be defined. The transformations
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T, and T,,® which connect the two models are then easily

defined.

MANIPULATOR
" KINEMATICS

MEASUREMENT
SYSTEM <
KINEMATICS

Figure 44. General Model Development

2. Manipulator Kinematic Modelling

For general 1link to 1link transformations within a
manipulator, the Denavit-Hartenburg or Modified Denavit-
Hartenburg method provides a model in which all parameters are
identifiable. Care must be exercised though when defining both
the base frame of the manipulator and what is defined as the
"end" of the manipulator Kkinematics. For an n 1link
manipulator, the "end" of the manipulator kinematics should be
defined by frame n-1. This frame is chosen due to the fact
that it is the last frame uniquely defined by the manipulator
geometry. Recall though that prismatic joints may lead to
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ambiguity in this frame’s location as well. A unique
manipulator base frame defined by the robots geometry is
required as well. For a rotary joint one, in which the joint
one axis is not parallel with Jjoint axis two, this is
accomplished as described earlier for the PUMA. The resulting
transformation to frame one contains only two identifiable
parameters. It can be shown that a unique base frame can be
defined which results in a similar reduction in the number of
identifiable parameters by two in models with parallel or
nearly parallel joint axes one and two or a prismatic joint
one. This can also be seen by studying the development of
Equation 51 [Ref. 15]. The result is that the number of
identifiable parameters, K, in a manipulator kinematic model
as defined here is given by Equation 52 where P and R are

defined as before.

K = 2P+4R-6 (52)

For the six rotary joint PUMA 560, the number of identifiable
parameters is 18 as developed earlier and listed in Table 1.
3. Measurement System Modelling

The preceding model development and analysis leads to
a lower bound on the number of identifiable parameters in a
closed chain kinematics model incorporating a measurement
device or system. The last or end frame in a manipulator
kinematic model, F"', is a unique fixed frame for a given set
of joint variables. The base frame is also unique. Therefore,
six unique parameters, three rotations and three translations,
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are required to transform between the two frames. Any number
of parameters less than six would imply dependencies within
the manipulator Kkinematics which are known to be unique.
Therefore, the minimum number of parameters, M, in the closed

chain model is

53
M = 2P+ 4F ( )

Sumnarizing, the number of identifiable parameters, n, in the

closed chain kinematic model is bounded by M and N.

54
M<ns< N ( )

Applying Equation 54 to the PUMA, the number of identifiable
parameters is between 24 and 30 inclusive. In terms of the
measurement system kinematic, the foregoing states that the
model will consist of at least six and no more than 12
constraints.
4. Linking the Measurement and Manipulator Models

If the number of constraints in the measurement system
model is less than 12, then the model will contain geometric
quantities such as points or axes which can be thought of as
"reduced order frames". As described in the section Other
Special Cases, transformations between frames and "reduced
order frames" are easily developed and clearly indicate

dependant parameters.
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5. Case Studies
A number of calibration methods, both performed and
proposed, were studied in detail in order to redefine the
overall model in the form of Figure 44. Specific emphasis was
placed on the measurement system model development with a goal
of "standardizing" this process. Each method assumes
calibration of a PUMA 560 and thus the manipulator kinematic
model consists of the previously defined 18 parameters.
a. The Coordinate Measuring Machine

The Coordinate Measuring Machine method described
earlier was studied and the model was then developed in the
form of Figure 44. The measurement system, which consist of
the CMM and the precalibrated tooling ball end effector, are
illustrated in Figure 45 and its kinematic model is briefly
restated here. Since the orthogonal axes of the CMM
independently define a reference orientation and the position
measurenments can be made with respect to a zero reference, an
independent reference frame is defined. Through a series of
position measurements of the calibrated tooling ball end
effector, full pose of the end effector is defined as well.
Therefore, the measurement system kinematic model consists of
two fully defined and independent frames for a total of 12
constraints.

All 12 parameters are identifiable in the
transformations linking the manipulator and the measurement

system and hence n=30 for the overall model. Table 11 lists
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Figure 45. Coordinate Measuring Machine and End Effector

the parameters of T,° and T." which are all typed in bold since
all 12 are identifiable. Figure 46 illustrates the CMM closed
chain kinematic model.
b. The Ball Bar

The ball bar described earlier consist of a rigid
bar of fixed length with a ball joint mounted at each end and
is illustrated in Figure 47. One ball joint is fixed in the
manipulator’s workspace and the other is attached to the
PUMA’s end effector flange. Each ball 3joint has three
constraints, fixed translations, and consequently is capable
of defining a point. The three degrees of freedom, three

rotations, prevent associating an orientation at either joint.
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Consequently, the measurement system model simply consist of

two points.

End Effector Joint

Fixed Joint

Figure 47. Ball Bar

As noted earlier, three parameters are required to
transform from a frame to a point and one of these parameters
must be a translation. The overall model must then consist of
24 identifiable parameters. A logical choice of parameters for
identification are indicated in bold in Table 12. The
unidentifiable parameters of the RPYT transformation are
defined to be zero as indicated. The closed chain kinematic

model is illustrated in Figure 48.
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Figure 48. Ball Bar Kinematic Model

Table 12. T,° and T." Kinematic Parameter Table

T.° T.*
0 ¢:
0 0
0 0
X, X,
Y 0
z, z,
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c. The Linear Slide

The linear slide measurement system consists of
the lower base assembly of the CMM. The y axis post is removed
and the PUMA end effector is bolted in this location. The PUMA
and slide are illustrated in Figure 49. The end effector
orientation, since it is bolted to the slide, is fixed. Motion
along the slide defines a direction. Relative displacement
measurements are available from the CMM display unit. However,
much like the prismatic joints in manipulator kinematics, no
specific point is defined by the geometry. In an analogous
fashion, an axis can be specified at the "next" or "last"
defined coordinate frame. Two choices are available, either
the PUMA base frame or frame 5. Defining the axis at frame 5
more closely resembles the physical system and so this frame
is chosen. This fixes F* coincident with F°. With an axis now
defined, a unique point on this axis can be defined by the
common normal between joint axis one and this axis. Another
fixed point on the axis is defined as well by the relative
displacement measurements. The origin of F* can be placed at
this point noting that only one direction or orientation
constraint is specified. Summarizing, the orientation of F® is
specified but its origin is not unique. The origin of F" is
specified as well as one orientation.

To transform from a frame to a point on axis
requires three translations (point to point) and two rotations

for an axis alignment. Since F® is coincident with F®, only
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Figure 49. The PUMA and Linear Slide

three rotations are necessary to transform between these two
frames. Therefore, eight parameters are necessary for the
transformations between the manipulator kinematics and the
measurement kinematics which results in a 26 parameter model.
Table 13 lists the parameters in these two transformations
with the identifiable parameters in bold and the

unidentifiable parameters defined to be zero as before. The

model is illustrated in Figure 50.
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Table 13. T,° and T." Kinematic Parameter Table
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Figure 50. Linear Slide Kinematic Model

123




d. The Wire Potentiometer

The Wire Potentiometer method was described in
detail earlier and is briefly described here. The wire
potentiometer provides a resistance which is proportional to
the amount of wire extracted from the device. These devices
are designed for linear displacement measurements. In order to
provide displacement measurements in a volume, the two
fixtures illustrated in Figure 51 were designed. The funnel
shaped ports prevent wire deformation and each defines an
axis. The throat of the funnel defines a fixed point in a
similar fashion to a ball joint. Therefore, the measurement
system consists of two points and an axis through each.

As noted earlier, five parameters are required to
transform between a frame and a point on an axis. Therefore,
a model with 28 identifiable parameter results. Note that due
to the small size of the funnel ports used in the previously
described experiment, both axes were assumed not to be
identifiable. In this case, the model reduces to a 24
parameter model. Table 14 1lists both the identifiable
parameters and unidentifiable as before for the 28 parameter
model. Note that other combinations are possible. Figure 52

illustrates the kinematic model.
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Figure 51. Wire Potentiometer Fixtures
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Table 14. T,° and T.® Kinematic Parameter Table

T,.° T.F
. é.
0, B
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Figure 52. Wire Potentiometer Kinematic Model
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e. Single Theodolite

Calibration of a PUMA 560 was performed by
Whitney, Lozinski and Rourke using a single theodolite [Ref.
16]. The single theodolite measurement system is composed of
a theodolite and a target fixed on the manipulators endpoint.
The theodolite is capable of accurately measuring an azimuth
and elevation angle of an object along its line of sight. The
target defines a point in space. The intersection of the
azimuth and elevation angles defines a point and since these
are measured with respect to a zero reference, a specific
orientation is defined at this point. This relationship is
illustrated in Figure 53. Summarizing, the measurement system
kinematic model consists of a point at F* and a fully defined
frame at F".

Six parameters are obviously necessary to
transform from F* to F°. The transformation T." requires three
of parameters and as usual, one must be a translation. With
these 9 identifiable parameters, the resulting closed chain
kinematic model consists of 27 parameters. Table 15 lists one
possible combination of identifiable and wunidentifiable
parameters. Figure 54 illustrates the kinematic model for the

single theodolite closed chain.
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Figure 53. Theodolite Measurement System
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Figure 54. Single Theodolite Kinematic Model

Table 15. T,° and T.® Kinematic Parameter Table

T.° T.*
. ¢
0, 0
Yu 0
X, X,
Y 0
z, z,
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f. Three Wire Potentiometer
The three wire potentiometer method utilizes three
wire potentiometers placed in a known or calibrated triangular
arrangement. The end effector fixture consists of a triangular
shaped plate with three funnel shaped ports again placed in a
calibrated triangular arrangement. A sketch of the system is
shown in Figure 55. The known triangular arrangenent defines

a frame at both the measurement system base and end effector.

Figure 55. Three Wire Potentiometer Measurement System

With frames defined at both F* and F%, the
resulting closed chain Kkinematic model contains all 30
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parameters of the "complete" model. The Kkinematic parameter
table for T,) and T.* is the same as Table 11 and the closed
chain kinematic model is the same as Figure 46.
g. Planar Motion

This measurement system consist of a smooth flat
plate placed in the manipulators workspace and an end effector
with a single precision tooling ball. The tooling ball is
placed in contact with the plate in a variety of 3joint
variable configurations and at arbitrary locations on the
plate. In this measurement system, the tooling ball defines a
point and this is the makeup of Ff. The "planar" motion of
this point defines a plane. A unique point can be defined at
the intersection of the plate "plane" and joint axis one. A
unique direction perpendicular to the plate is specified at
this point but no additional orientation is specified.
Consequently, F" is composed of a point on an axis. Note that
F* lies on joint axis one.

Two rotations and one translation are required in
T.°. The rotations are necessary for axis alignment and then
the translation along joint axis one places F* at F°. Three
parameters can be identified in T.!, a frame to point
transformation, and one of these must be a translation as
usual. The resulting closed chain kinematic model then
consists of 24 identifiable parameters. Table 16 indicates one
possible combination of identifiable parameters. Figure 56

depicts the closed chain kinematic model. If the tooling ball
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end effector of CMM method were used instead of a single
tooling ball, then a frame is defined at Ff and a 27 parameter

model results.

Table 16. T,.° and T.® Kinematic Parameter Table

T’ T.*
®. ¢
8, 0.
0 0
o 0
0 0
z, z,
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Figure 56. Planar Motion Closed Chain Kinematic Model

6. Discussion of Case Studies

There are, in general, two broad categories of

measurement systems used in manipulator calibration:

- Those which mechanically constrain the manipulator

- Those which dc not mechanically constrain the manipulator
The non-constraining type systems are typically easier to
model and these will be discussed first.

One reason that non-constraining type measurement
systems are usually easier to model is that a measurement
system reference frame is typically better defined. The second
reason is that the measured quantities are often the more
familiar cartesian or spherical coordinates of a point or

points on the end effector.
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Conversely, the location and any associated
orientation of a reference frame for constraining type
measurement systems is frequently not obvious. In fact, it is
often not defined until the position of the end effector frame
is defined. In this case, this frame is not really a reference
at all, but it is convenient for symmetry to refer to it as
such. Additionally, the measured quantities may consist of
some known spatial relationship such as a path or surface as
opposed to more familiar lengths and angular displacement.

Although no foolproof cookbook approach to model
development seems to exist, a set of guidelines can be
established. A generalized process for model development is
illustrated in the flowchart in Figure 57. The first step is
to determine which of the two broad categories the measurement
system belongs. Even this step is not always trivial since a
measurement system such as the wire potentiometer could be
arguably placed in either category.

As stated earlier, most non-constraining measurement
systems have relatively well defined reference frames.
However, it is noted that it is not a trivial task to define
why, for example, the CMM, which is a system of three
prismatic joints, establishes a unique reference frame even
though it seems quite obvious at first glance.

Once a reference frame is established, the end
effector frame 1is analyzed. Most non-constraining type

measurement systems measure points on the end effector in
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Figure 57. Measurement System Kinematic Model Development

either spherical or cartesian coordinates or can be modelled
in this fashion. It is not necessary for the point to be fully
defired to be modelled as such as in the case of the
theodolite. In this example, the azimuth and elevation angles
are known but the distance between the reference frame and the
point is unknown. If additional points or other geometric

factors are measured for each set of joint variables, then
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full pose or at least some aspects of orientation can be
identified.

For constraining type measurement systems, it 1is
usually advantageous to analyze the end effector fixture
first. Analysis of the degrees of freedom of the end effector
fixture at an arbitrary point will begin to define the make-up
of Ff. For example, the end effector fixture for the Linear
Slide method, which is essentially the x axis carriage of the
CMM, is fixed in orientation at any position along the slide.
In the Modified Linear Slide method, the ball joint allows
three rotational degrees of freedom. The degrees of freedom
for mechanical joints are easily identified and provide much
of the needed information. The result of this analysis may or
may not define a fixed point or location in space.

The next step is to analyze end effector motion as the
manipulator is varied through a series of measurements. Motion
along known paths or surfaces may further define F* or may
begin to define the location of F*. For example, a unique
reference point was established by the plane defined by end
effector motion in the Planar Motion calibration example.

At this point in the process, additional joints or
features of the measurement system should be identified.
Additional joints will likely establish the reference frame
origin. For example, the fixed ball joint in the Ball Bar
method or the funnel throat in the Wire Potentiometer method

define the origin of F". However, this point would already be
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established in the Ball Bar method by considering the
spherical surface traced out by end effector motion.

Specific or unique locations of each frame may be
defined when this step is reached. However, as in the case of
the Linear Slide method, no unique point in space is defined
by the measurement system considered alone since only a
direction is defined. As illustrated in the Linear Slide mcdel
development, either F* or Ff must be defined coincident with
either the manipulator base frame or the last defined frame of
the manipulator kinematic model. When this assignment is made,
additional parameters of the other measurement system frame
may be fixed based on geometric relationships.

Thz final step involves incorporating "instrumentegd"
information provided by the measurement system into the model.
For example, if a ball joint is "instrumented" to provide
elevation angle above some prescribed zero, then a specific
axis is specified at the ball joint origin.

The large scope of measurement systems and devices
capable of being used in manipulator calibration defies a more
rigorous algorithm for model development. However, the
preceding approach does provide a sound approach which will

result in a properly defined model.

137




V. CONCLUSIONS

EXPERIMENTAI. RESULTS

A PUMA 560 manipulator can be calibrated using either one
of the three methods with a resulting accuracy which
approaches or equals the repeatability of 0.3 mm.

The Coordinate Measuring Machine calibration method will
identify the "complete" 30 parameter kinematic model with
a resulting accuracy of 0.3 mnm.

The Modified Linear Slide method will identify 26
parameters with a resulting accuracy of 0.74 mm.

The Wire Potentiometer will identify 24 parameters with a
resulting accuracy of 0.49 mm.

The Modified Linear Slide method did result in a more
accurate calibration, 0.74 mm, than the Linear Slide
method, 0.9 mm, which emphasizes the need for large joint
variable excitation.

The lower calibration accuracy achieved with the Linear
Slide Method as compared to the 1less accurate Wire
Potentiometer supports the theory that "random" poses are
more desirable than poses restricted to paths or
trajectories regardless of joint excitation.

The Wire Potentiometer method provides an accurate,
inexpensive, portable calibration device which is easily
automated and capable of rapid calibration of a large
class of manipulators.

MEASUREMENT SYSTEMS WITHIN CLOSED CHAIN KINEMATIC MODELS

A manipulator kinematic model can be developed which will
exhibit no parameter dependancies within transformations
to external reference frames

The number of identifiable parameters of a typical serial
link manipulator in a closed chain kinematic model is
given by Equation 52 and for the PUMA 560 the number of
parameters is 18.

The process of developing closed chain kinematic models
with embedded measurement systems for parameter
identification can be divided into three separate tasiks:
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Develop the "manipulator kinematic model"; Develop the
"measurement system kinematic model"; Link the two models
using only the required parameters of a RPYT
transformation.

No comprehensive algorithm for measurement system
kinematic model development exists due to the wide variety
of measurement systems which can be employed. However,
some useful guidelines may be employed.
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APPENDIX A

PROGRAM BLINSC

This prograe generates sets of joint angles for the Puma manipulator
ara. It assumes that the tool frame of the manipulator is
constrained to move in the positive x direction only. The

tool is constrained by a ball joint mounted to a sliding linear scale.
The values along the ¥ direction are generated by a random number
generator.

INTEGER LDEJAC, M, N, OBS, NOBS
PARAMETER (LDFJAC=3, M=LDFJAC, N=6)

REAL*8 £i0, thO, si0, px0, pv0, p20
REAL#8 DT1, DT2, DT3, D14, D5

REAL#8 DD1, DD2, DD3, DD4, DDS

REAL*8 AA1, AAZ, AA3, AAd, AXS

REAL*8 AL1, AL2, AL3, AL4, ALS

REAL*8 BL1, BLZ, BL3, BL4, BLS

REAL*8 Dré, FI6, TH6, SI6, PX6, PY6, Pi6

REAL*8 RN1,RN2,RN3,RN4,RNS,RN6
REAL*8 RN7,RNS,RN9,RN10,RN11,RN12
REAL*S RN13,RN14,RN15,RN16,RN17,RN18

INTEGER INFER,IER,IOPT,NSIG,MAXFN

REAL*8 PJAC(LDEJAC,N), XJTJ((N+1)%N/2), XJAC(LDFJAC,N)
REAL*8 PARM(4), F(LDFJAC), WORK((5*N)+(2*M)+({N-1}*N/2))
REAL*8 X(N)

REAL*8 MAGNY,MAGN1

EXTERNAL PUMA_ARM

INTEGER I, J, K, NOU
REAL#8 TDES(3), T(4,4), SCALE, DANGLE, DLENTH, NUM

COMMON /PDATA/ TDES, DANGLE, DLENTE, T

COMMON /KIN/ FTO,THO,SIO,PX0,PYO0,PZ0
DT1,DT2,DT3,DT4,DT5,
AL1,AL2,AL3,AL4,ALS,
AAL,AA2,AA3,AA4 MRS,
bb1,DD2,DD3,DD4,DD5,
BL1,BL2,BL3,BL4,BLS,
D¥é,TH6,SI6,PX6,PY6,P16

@ ey oo
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¢ Initialize data variables
0BS=0
C Open data files for imput and output

OPEN (10, NAME="PUM:-PCS.DAT’, STATUS='NEW’)
OPEN (9, NAME='INPCT.DAT’, STATUS='OLD’)

C Read input kinematic data

RERD (9,%)

RERD (9,*) FIO,THO,SIO,PX0,PY0,PI0
READ (9,%) DT1,DD1,AAl,AL],BL
READ (9,%) DT2,DD2,AA2,AL2,BL2
READ (9,%) DT3,DD3,AA3,AL3,BL3
READ (9,%) DT4,DD4,AR4,AL4,BL
READ (9,#) DT5,DD5,AAS,AL4,BLS
READ (9,*)

READ (9,%) DFé,THG,SI6,PX6,PY6,PI6
READ (9,%)

READ (9,%) NOBS,NOU,DANGLE ,DLENTH , MAGNY ,MAGKL

CLOSE (9)
C Adjust nominal values

PI0=FI0+DANGLE
TBO=THO+DANGLE
§10=0.0

PX0=PX0+DLENTH
PYO=PYO+DLENTH
PZ0=PZ0+DLENTH

DT1=0.0

DT2=DT2+DANGLE
DT3=DT3+DANGLE
DT4=DT4+DANGLE
DT5=DT5+DANGLE

AL1=AL1+DANGLE
AL2=AL2+DANGLE
AL3=AL3+DANGLE
AL4=AL4+DANGLE
AL5=AL5+DANGLE

AA1=AA1+DLENTH
AA2=AA2+DLENTE
AA3=AA3+DLENTH
AA4=AA4+DLENTH
AAS=AAS+DLENTH
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DD1=0.0
DD2=0.0
DD3=DD3+DLENTE
DD4=DD4+DLENTE
DD5=DDS+DLENTH

BL1=BL1
BL2=BL2+DANGLE
BL3=BL3
BL4=BL4
BL5=BL5

DF6=DF6+DANGLE
TH6=TH6
S16=S16
PX6=PX6+DLENTH
PY6=PY6
P26=PZ6+DLENTH

C Get random nusber seed

WRITE (6,%} 'Type in a 6-digit randor number seed’
READ (5,%) ISEED

C Start of main loop
1010 0BS=0BS-1

C Set initial values of joint variables
X(1)=70.0
X(2)=0.0
X(3)=90.0
X(4)=0.0
X(5)=50.0
X(6}=90.0

C Get randos slide lengths

1000  CALL RANDOM {ISEED,NTM;
NUN=NUM*940.0

C Bstablish desired tool position
TDES{1)= NUM
TDES(2)= 0.0
TDES(3)= 0.0
C Call IMSL 2¥sSQ for inverse kinematic solution

NSIG=4
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EPS=0.0
DELTA=0.0
M2XFN=500
10PT=1
IXJAC=LDFJAC

CALL 2XSSQIPUM2_ARM M,N, NSIG,EPS,DELTA MAXFN,IOPT,PARM,X,
& 8SQ,F,XJAC, IXJAC,XJTJ, WORK, INFER, IER)

C Check for sinqularities
IF (8SQ .GT. 0.00001) GOTC 100
C Print results to 2 decimal places
WRITE (6,%) OBS,SSQ
C Generate the random noise

CALL RANDOM (ISEED,RN1)
CALL RANDOM (ISEED,RNZ)
CALL RANDOM (ISEED,RN3)
CALL RANDOM (ISEED,RN4)
CALL RANDOM (ISEED,RNS)
CALL RANDOM (ISEED,RN6)
CALL RANDOM (ISEED,RN7)
CALL RANDOM (ISEED,RNS)
CALL RANDOM (ISEED,RN®)

RN1 = MAGNX * (2.0 * RNl - 1.0)
RN2 = MAGNX * (2.0 * RN2 - 1.0}
RN3 = MAGNX # (2.0 * RN3 - 1.0)
RN4 = MAGN1 * (2.0 * RN4 - 1.0»
RNS = MAGK1 * (2.0 * RN5 - 1.0)
RN6 = MAGN1 * (2.0 * RN6 - 1.0)
RN7 = MAGN1 * (2.0 * RN7 - 1.0
RN8 = MAGNL * (2.0 * RN8 - 1.0}
RN9 = MAGN1 * (2.0 * RNO - 1.0)

C Inject random noise

X(1) = X(1)} + RN4
X(2) = X(2) + RNS
X{3) = X(3) + RN6
X(4) = X(4) + RN7
X(5) = X(5) + RN¢
X(6) = X(6) + RN9

TDES(1)=TDES{1}+RN1
TDES(2)=TDES(2)+RN2
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TDES{31=TDES(31+RN3

WRITE (10,%} X(1),X(2),X(3},%(4),X(5),X(€)
WRITE (10,*) TDES(1),TDES(2),TDES(3)
WRITE (10,%*)

C Continue for other slide positions
IF (OBS .LT. NOBS! GOTO 1010
CLOSE (10

END

C kktkkphkdkhkdhdbhheddettdohrbhhdrddthanddrbdahdedhohdahockeekens

SUBROUCTINE PCM:_ARM (X,M,N,Fi

C This subroutine calculates the non-linear function for the use of
C the IMSL routine 1¥SSQ. It is the inverse kinematic solution for
C the PUM: manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ

REAL*8 FIO, TEO, SIO, PXO, PY0, PIC
REAL#8 DT1, DT2, DT3, DT4, DIS

REAL*8 DD1, DD2, DD3, DD4, DD5

REAL#8 AR, AA2, AA3, AA4, AKS

REAL*8 ALY, AL2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, F16, TH6, SI6, PX6, PYé, PIf

REAL*8 TH1, TH2, TH3, TH4, THS

REAL#8 TO(4,4), T1(4,4), T204,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), trpy(4,4), txyz(4,4)
REAL*8 TIMAT(4,4), T(4,4), td(4,4)

INTEGER I, J, K
REAL#8 TDES(3), DANGLE, DLENTH, SCALE

COMMON /PDATA/ TDES, DANGLE, DLENTH, T

COMMON /KIN/ F10,THO,SIO,PX0,PYO,PZ0
DT1,DT2,DT3,DT4,DT5,
AL1,AL2,AL3,AL4,ALS,
AAL,AA2 AA3 AR4,LAS,
DD1,DbD2,DD3,DD4,DD5,
BL1,BL2,BL3,BL4,BLS,
DFe,TB6,S16,PX6,PY6,PL6

oo
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C Initialize the TIMAT matrix to an I matrix:
pAT: TIMT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1°
SCALE=100.0

C Initialize the T matrix to an I matrix

" 1]

DO JJ =1
T(I1,30y = TIMAT(II,I

ENDDC

ENDIC

DO IT=1,4
)4

C Manipulator joint angles

TH1 = DT1 + X(1)
TH2 = DT2 + X(2)
TE3 = DI3 + X(3)
TH4 = DT4 + Xi4)
TES = DTS + X(5)

FI6 = DF6 + X(6}

C Compute the T matrices, Tl thru 76:

CALL T3RPY (FIO,THO,SIO,TRPY)
CALL T3XYZ (PX0,PYO,PZ0,TXYD)
CALL MATMULC (T0,TRPY,TXYZ)

CALL TRANSFORM ( AL1, ARl, DDI, THL, BL1, Ti
CALL TRANSFORM { AL2, Ak2, DD2, THZ, BL2, T2
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( AL5, AA5, DD5, THS, BLS, T5

CALL T3RPY ¢ FI6, TH6, SI6, TRPY )
CALL T3XYZ ( PX6, PY6, Pi6, TXYL )
CALL MATMULC ( Té, TRPY, TXYC )

Compute the overall transformation, T:

CALL MATMTLA ( T, TO
CALL MATMULA ( T, T1
CALL MATMULA (T, T2
CALL MATMCLA (T, T3
CALL MATMULA ( T, T4
CALL MATMULA (T, TS
CALL MATMULA ( T, T6

C Calculate the function F
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F(1)=T(1,4)-TDES(1)
F(21=T(2,4)
Fe3=Ti3,48

C Calculate residual and write to screen
SCM = 0.0
D0 i=1,3
XS5Q=SUM-F(I)
ENDDC
WRITE (6,%) X887

RETURN
END

C REkfkkrkkkkhkhkkRekhhkhothdkkexkkhkdthdktkkhkkdbhkhdkkhkkknks

SUBROUTINE RANDOM (X,7)

C This subroutine generates random numbers in the range 0-1
C using a supplied seed x, the returned random number being z.

REAL FM, FY, I
INTECER &, X, I, M
DATA I'1

IF (I .EQ. 0 ) GO TC 1003
I=0
M= 2 %% 20
FH= H
A= 2%x]( « 3
1000 X= MOD{ A*X M)
FX= %
i= FY/ T

RETCRK
END
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APPENDIX B

PROGRAM BID§

C Robot Identification using the Non-linear Least Squares method for the modified linear slide method.
C Simulation data is read for the PUMA manipulator fror the data file PUMA-POS.DAT

C Change parameter LDFJAC to change the number of observatiors,
C set LDFJAC = 6 * Number of observations

INTEGER LDFJAC, MM, M, KN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER
PARAMETER (LDFJAC=3*100, MM=LDFJAC, NN=26!

REAL*8 FJAC(LDEJAC,NN), XJTJ((NN:1)*NN:2)

REAL*8 PARM(4), P(LDFJAC), WORK((S*NN)+(2#MM)+((NN+1)*NN'2))
REAL*8 X(NN)

EXTERNAL PUMA_ARM

REAL*8 DANGLE, DLENTH, TQ, DQ, EPS, DELTA, SSQ
REAL*8 SQERR1, SQERR2

REAL#8 FIO,THC,SIO,PX0,PY0,P20
REAL#8 DT1, DT2, DI3, DT4, DI5
REAL*8 DDi, DD2, DD3, DD4, DDS
REAL*8 A1, AA2, AA3, AA4, M5
REAL®8 AL1, AL2, AL3, AL4, ALS
REAL#8 BL1, BL2, BL3, BL4, BLS
REAL#*8 DF6, TH6, SI6, PX6, PY6, PI6, FI6

INTEGER I, J, K, NOBS, MAXNOBS

PARAMETER (MAXNOBS=360)

REAL#8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNORS)
REAL#8 TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS)
REAL#S TM(3,MAXNOBS), SCALE

COMMON /PDATA/ NOBS, TH, SCALE,

§TET1, TET2, TET3, TET4, TETS, TET6

C Open data files for inputs and results
OPEN (8, NAME='RESULT.DAT’, STATUS='NEW’)
OPEN (9, NAME-'PUMA-POS.DAT’, STATUS='OLD’)
OPEN (10,NAME="INPCT.DAT’, STATUS='OLD’)

¢ Read input parameters
READ {10,%)
READ (10,*) FI0,THO,SIO,PXO0,PYO,PI0
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READ (10,%) DT1,DD1,AAl,ALL,BL1

READ (10,%) DT2,DD2,AA2,AL2,BL2

READ (10,%*) DI3,DD3,AA3,AL3,BL3

READ (10,*) DT4,DD4,AR4, AL4 BL4

READ {10,%) DT5,DDS,AA5,ALS,BLS

READ (10,%)

READ (10,%) DFé,TB6,SI6,PX6,PY6,P16

READ (10,%)

READ (10,*) NOBS,N,DANGLE,DLENTH,MAGNX,NAGNL

CLOSE (10)
C Initialize data variables

X(1)=FI0
X(2)=TEO
X(3)=PX0
X(4)=PY0
x(5)=Pi0

X(12)=DT3
X(13)=DD3
X(14)=A23
X(15)=AL3

1(16)=DT4
X(17)=DD4
X(18)=AA4
X(19)=AL4

X(20)=DT5
X(21)=DD5
X(22)=AA5
X(23)=AL5

X(24)=DF6
1{25)=PX6
X(26)=Ps6
C Read simulated joint data and tool pose
DO =1, NOBS
READ (9,#%) TET1(J), TET2(J), TET3(J), TET4(J), TETS(J}, TETE(I)
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REED (9,*) TMIL,J}, TM(2,J), TH:3,d)
READ (9,%*)

ENDDO

CLOSE (9)

C Initialize scale for the angular rows of the Jacobian
SCALE=100.0
C Call IMSL routine for non-linear identification

NSI1G=4
EPS=0.0
DELTA=0.0
MAXFN=1500
10PT=1
IXJAC=LDFJAC
N=3*NOBS

CALL ZXSSQ(PUMA_ARM M N, NSIG,EPS,DELTZ,MAXFN,IOPT,
& PARM,X,85Q,F,FJAC, IXJAC, XJTJ, WORK  INFER, TER)

¢ Save results to data file

WRITE (8,*)

WRITE (8,*) 'FI0, TBO, SIO, PX0, PYC, PI0’
WRITE (8,888) X(1), X(2), 0.0, X(3), x(4), %(5)
WRITE (8,%)

WRITE (8,*%) 'DT1, DD1, Arl, ALl, BLY/

WRITE (8,888) 0.0, 0.0, X(6), X(7), 0.0

WRITE (8,%)

WRITE (8,*) 'DT2, DD2, AA2, AL2, BL2'

WRITE (8,888) X(8), 0.0, X(9), X(10), X(11)
WRITE (8,%)

WRITE (8,*) 'DT3, DD3, AA3, AL3, BL3’

WRITE (8,888) X(12), X{13), X{14}, X(15), 0.0
WRITE (8,%)

WRITE (8,%) 'DT4, DD4, AA4, AL4, BL4’

WRITE (8,888) X(16), X(17), X(18), X(19), 0.0
WRITE (8,%)

WRITE (8,%) 'DT5, DD5, AAS, ALS, BLS’

WRITE (8,888) X(20), X(21), X{22), X(23}, 0.0
WRITE (8,%)

WRITE (8,*) 'Dré, TH6, SI6, PX6, °Y6, Pi6’
WRITE (8,889) ¥X(24), 0.0, 0.0, X(25), 0.0, X(26)

888  PORMAT ( 5F12.5 )
889  PORMAT ( 6F12.5 )

C Calculate root mean square error in identification
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TQ = DANGLE
DQ = DLENTE

C Error in identification (anqular parameters)

SQERRL =
(FIO+TQ-X(1))*#%2 +(SI0+TQ-X(2))¥*2
+(DT3+TQ-X(12))%%2 +(DT4+4TQ-X(16))#**2 +(DT5+TQ-X(20))%*2
+(ALI+TQ-X(8) )22 +(AL24TQ-X(11))%%2
+(AL34TQ-X(15) ) #%2 +(AL4+TQ-X(19))%*2 +(ALS+TQ-X(23))#%2
+(BL2+TQ-X(11))%%2 +(DT2+TQ-X(8)}**2
+(DF6+TQ-X(25) ) %22

SQERRL = DSQRT( SQERR1/13 )

s a2 B A

C Error in identification (length parameters)

SQERRZ =

& (PXO+DQ-X(3))%%2 +(PYO+DQ-X(4)}*%2 +(PZ0+DJ-X(5)}4¥2

§  +(AR14DQ-X(6))%%2 +{AA2¢DQ-X(9))**2

& +(BA3+DQ-X(14))%%2 +(AA4+DQ-X(18))%*2 +(AAS+DQ-X(22))*%2
& +(DD3+DQ-X{14))**2 +(DD4+DQ-X(18))%%2 +(DD5+DQ-X(22))%*#2
& +(PX6+DQ-X(25))%%2 +(PI6+DQ-X(26))%*2

SQERR2 = DSQRT( SQERR2/13 )

WRITE (8,*)

WRITE (8,%) ’RMS PARMS (LENGTH), RMS PARMS (ANGLE)’
WRITE (8,*} SQERRZ2, SQERR1

WRITE (6,%) 'RMS PARMS (LENCTH), RMS PARMS (ANGLE)’
WRITE (6,*) SQERR2,SQERR1

WRITE (8,%)

WRITE (8,%*) 'INFER, IER,NOBS,NSIC
WRITE (8,%) INFER, IER,NOBS,NSIG
WRITE (6,*) ‘INFER, IER,NOBS,NSIG
WRITE (6,*) INFER, IER,NOBS,NSIG
WRITE (8,%)

CLOSE (8)

END

C khkkkkkdhkbkkhbbh bbb hdd kbbbt bbbtk kR Rk ke kkkkk ks
SUBROUTINE PUMA_ARM (X, M, N, F)
C This subroutine calculates the non-linear function for the use of

C the IMSL routine DUNLSF. It is the forward kinematic solution for
C the PUMA manipulator.
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INTEGER M, N

REAL®S X(N:, F(M)

INTEGER II, JJ

REAL*8 F10,THO,SIO,PX0,PYO,PIC

REAL*¢ DT1, DI2, D13, D74, DIS

REAL*8 DD, DD2, DD3, DD4, DD

REAL#*8 AAL, A-2, AR3, AR4, AR

REAL#3 ALl, AL2, AL3, AL4, ALD

REAL#*$ BL1, BL2, BL3, BL4, BLS

REAL*8 FI6, THE, SI6, PX6, PY6, Pi6, DIt

REAL*E TH, TH2, TH3, TH4, TES

REAL#8 TO(4,4), T1(4,4), T2(4,4), T3{4,4), T4(4, 4
RERL*8 T5(4,4}1, T6(4,4), TRPY(4,4), TIYI(4,4)
RELL#8 TIMAT(4,4), Ti4,4)

REAL*8 TINV{4,4), TMJ(4,4), TDELTA(4,4)

INTEGER I, J, K, NOBS, MAXNOBS

PARAMETER (MAXNOBS=360)

REAL*8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS:
REAL#8 TM(3 MAYNOBS), SCALE

COMMON /PDATA’ NOBS, TM, SCALE,

& TET1, TET2, TET3, TET4, TETS, TETé

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1'
C Set parameters for the manipulator:

FI0=X{1)
THO=X(2)
$10=0.0

PY0=X(3)
PYO=X(4)
P0=x(5)

DT1=0.0
DD1=0.0
ARl=x(6)
ALL=X(7)
BL1=0.0

DT2=X(8)
DD2=0.0
AA2=X(9)
AL2=X(10)
BL2=X(11}

DT3=X(12)
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DD3=X(13)
AR3=X(14)
AL3=¥{15)
BL3=0.0

DT4=X(16)
DD4=X(17)
AR4=X(18;
AL4=X(19)
BL4=(.0

DF6=X{24)
TH6-G.0
§16=0.0
PX6=X(25)
PY6=0.0
Pi6=X(2¢)

C Loop NOBS times

K=0
D0 J =1, NOBS

¢ Initialize the T matrix to an I matriy

DO II=1,4
DO JJ = 1,4
(11,33 = TIMAT(IL,30)
ENDDO
ENDDO

C Manipulator joint angles

TE1 = DT1 + TET1(J)
TH2 = D12 + TET2(J)
TH3 = DT3 + TET3(J)
TH4 = DT4 + TET4{Jy
THS = DT5 + TETS(J)
FI6 = DF6 + TET6(J)

Honou

C Compute the T matrices, Tl thru Té:
CALL T3RPY ( FIO, THO, SIC, TRPY)

CALL T3XYZ ( PX0, PYO, PIO, TXYD)
CALL MATMCLC { TO, TRPY, TXV)
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CALL TRANSFORM ( ALl, A:l, DDI, TEL, BL1, Tl
CALL TRANSFORM { AL2, A22, DD2, TB2, BL2, T2
CALL TRANSFORM ( AL3, AX3, DD3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AR4, DD4, TH4, BL4, T4
CLLL TRANSFORM ( AL5, AR5, DD5, TH5, BLS, TS

CALL T3RPY ( FI6, TH6, SI6, TRFY )
CALL T3XYC ( Px€, PY6, P26, TXYI )
CALL MATMULC (T6, TRPY, TXYI )

C Compute the overall transformation, T:

CALL MATMUL2 ( T, TO )
CALL MATMTLE (T, T1 )
CALL MATMULA (T, T2 )
CRLL MATMULE (T, T3 )
CALL MATMCLE (T, T4)
CALL MrTHLLf (T, 15
CALL MATMCLA (T, To )

C Get the "T-measured” matrix for this observation:

D0 II=1,3
DOJJ = 1,4
THJ(I1,33) = TH(II,3J,0)
ENDDO
ENDDO
TMI(4,1) = C.0
T™™I(4,2) = 0.0
THI(4,3) = 0.0
TMIi4,4) = 1.0

C Calculate the functions

K=K+1
FiKy = T(1,4)-TH{1,0)
K=K+1
FiKy = T(2,4)-TH(2,d)
K=FK+1
F(K) = T(3,4)-TH(3,J)

C End the do-loop for counter J
ENDDO
C Write RMS error in F

X55Q=0.0
DO II=1,3#NOBS




X85Q=X8SQ+F(II}*F(II}
ENDDO

XER=SQRT(XSS2)
WRITE(6,%) XER

RETURN
EXD

C krkkktkxkkIhekekbhkdkdkkekbdrbrrhiddkdhdhkdhhkkddrdrkrkbkbkkhdhakdbdns
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APPENDIX C

C AR RRRREREEREEERRAKRKRARRRRRRRERRARARRKRRARRRR IR AR R KA KRR AR A XA KRR AR R
PROGRAM VERIFY

C This program generates the six-dof pose error for the PUM: manipulator.
C It contains the identified calibration parameters and the exact parameter.
C It uses a data file of verification joint angle sets POSEVER.DAT, and the
C file RESULT.DAT from the program ID6.

INTEGER I, J, K, NPOSES, N

REAL#8 DANGLE, DLENTE

REAL*8 DT(5),DD(5),AA(5),AL(5),BL(5},MEAS(6)

REAL*8 EDT(5),EDD(5),EAR(5),EAL(5),EBL(5),EHEAS(€)
REAL*8 EDF6,EFI6,ETH6,ES16, EPX6,EPY6, EPI6

REAL#8 THETA(1000,6), TDELTA(4,4)

REAL*8 TO(4,4), T1(4,4), T204,4), T3:4,4)

REAL*S T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYI(4,4)
REAL*S TIMAT(4,4), T(4,4), ET(4,4)

REAL#8 DT1, DT2, DT3, D14, DTS

REAL*S DD1, DD2, DD3, DD4, DDS

REAL*S AAl, AA2, AR3, AR, ABS

REAL*8 AL, AL2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, Pi6, Pl6
REAL*8 X, YX, IW

COMMON TIMAT,THETA

C Initialize the TIMAT matrix to an I matriy:
DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/
C Open data file
OPEN (9, NAME='POSEVER.DAT’,STATUS='OLD’)
OPEN (10, NAME='INPUT.DAT’, STATUS='QOLD’)
OPEN (11, NAME=RESULT.DAT’, STATUS='QLD’)
C Read input parameters
READ (10,%)
READ (10,*) MEAS(1),MEAS(2),MEAS(3),MEAS(4) MEAS(5) MEAS(6)
READ (10,%) DT1,DD1,AAl,ALL,BL]

READ (10,*) DT2,DDZ,Aa2,3L2,BL2
READ (10,%) DT3,DD3,AA3,AL3,BL3
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REZD (10,%) DT4,DD4,AR4,AL4,BLY

READ (10,%) DT5,DDS,A25,AL5,BLS

RED (10,*

RED (10,*) DFé,THG,SI6,PX6,PY6,Pl6

READ (10,%)

READ (10,%) NOBS,R,DANGLE,DLENTE MAGNX ,MAGKL

CLOSE (10)

C Read in joint angle sets for verification poses
NPOSES=NOBS

DO I=1,NPCSES
READ(9,*)
READ(9,*)THETA(I,1),THETA(I,2),TRETACI, 3), THETA(T, 4,
& THETA(I,S),THETA{I,6)
ENDDO
CLOSE(9)

C Set exact link parameters for the manipulator:

DO I=2,5
DT(I)=DT(I)+DANGLE
ENDDC

MEAS{1)=MEAS(1)}+DLENIE
MEAS(2)=MEAS{2)+DLENTH
MEAS(3)=MEAS(3)+DLENTH
MEAS(4)=MEAS( 4)+DLENTH
MEAS(5)=MEAS(5)+DLENTE
MEAS(6)=MEAS(6)+DLENTH

AL(1)=AL1+DANGL

AL(2)=AL2+DANGLE
AL(3)=AL3+DANGLE
AL(4)=AL4+DANGLE
AL{5)=AL5+DANGLE

AA(1) = AALl + DLENTH
AL(2) = AA2 + DLENTH
AA(3) = AA3 + DLENTH
AA(4) = AA4 + DLENTE
AA(5) = AA5 + DLENTH

DD(1} = DD1
DD(2) = DD2
DD(3) = DD3 + DLENTH
DD(4) = DD4 + DLENTH
DD(5) = DD5 + DLENTH
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BL(1} = BLl
BL{2} = BL2 + DANCL
BLi3) = BLS
BL(4) = BL4
BL{5) = BL4

DFé
THE
SI¢
|28
PY6
Pié

DF6 + DANGLE
THS
SI6
PX5 + DLENTE
PY6
P6 + DLENTH

C Read in and set up estimated parameter table

REED(11,%)
READI1L, %)
READ(11,%) EMEAS(1),EMEAS(2),EMEAS(3)

Do I=1,5

REZD111,%)

READi 11, %)

READ (11,*) EDPT(I),EDD(I),EAA(T},ERL(I),EBL(T)
ENDDC

REXD(11,%)
READ(11,%)
REXD{11,*) EDF¥6,ETHE,ESI6,EPXE,EPY6,EPE
C Main loop through NPOSES joint angle sets
DO K=1,NPOSES
CALL FKS (K,MEAS,DT,AL,AA,DD,BL,FI6,TH6,S16,PX6,PY6,PL6,T)
CALL FKS (K,EMEAS,EDT,EAL,EAA,EDD,EBL, EFI6,ETHE,ESI6,EPX6,
& EPY6,EPL6,ET)
C Compute the differential tool matriy
CALL MATSUB(TDELTA,T,E.)
¢ Compute the pose errors
POSERR=SQRT(TDELTA(1,4)**2+TDELTA(2,4)#%2+TDELTA(3,4)%%2)
ORERR1=(TDELTA(3,2)-TDELTA(2,3))/2
ORERR2={TDELTA(1,3)-TDELTA(3,1)}/2
ORERR3=(TDELTA(2,1)-TDELTA(1,2))/2
ORERR=SQRT (ORERR1#*2+0RERR2**2+0RERR3*#2)

¢ Update total error counts
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POSTERR=(POSERR~ (K-1)*POSTERR) /K
ORTERR={ORERR+(K-1)*ORTERR) /K

¢ End of mairn loop
ENDIX

WRITE16,*; ‘Position error, orientation error’
WRITE(6,%) POSTERK,ORTERK
END

o REXXRRRRRAR A ARRR AR RN AR AR AR KRR TR AR R AR AR R IRk R AT E Ak kT k%

SUBROCTINE FKS (N,MEAS,DT,AL,AA,DD,BL,DF6,THE,SI6,
& PX6,PY6,PC6,T)

REZL*8 T0(4,4), Ti{d, &), 1204,4), T314,4)

REAL*E T4(4,4), T5(4,4), T6i4,4), TRPY(4,4), TXYI(4,4)
RELL*S TIM:T(4,4), Ti4,4), dt(5),al(5),aa(5),dd(5},bl(5)
REAL*E THETA(100C,6),ANCtS) MELS{6)

COMMON TIMAT,THET:
C Initialize the T watriy to an I matriy:

DG J=1 4
DG k-1,4
T 2K = TIMAT,K)
END.
ENDDC

C Set up the joint angles

pe I=,5
ANG 1y=THETZN,D-DTI D)
ENDDC

F16=T -STA(N,6)+DF6
C Compute th~ T matrices, Tl thru Té:

CALL T3RPY (MEAS(1),MEAS(2),MEAS(3),T0)
CALL T3XYZ (MEAS(4),MEAS(5),MEAS(6),T0)
CALL MATMULC (TO,TRPY,TXYZ)

CALL TRANSFORM (AL(1),AA(1),DDi1),ANG(1),BL(1),T1)
CALL TRANSFORM (AL(2),AA(2),DD(2),ANG(2),BL(2),TD)
CALL TRANSPORM (AL(3),AA(3),DD(3),ANG(3),BL(3),Tl}
CALL TRANSFORM (AL(4),AA(4),DD(4),ANGi4),BL(4),T1)
CALL TRANSFORM (AL(5),AA(5),DD(5),ANG(5),BL(5),T1)
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CALL T3RPY (FI6,TBE,SI6,TRPY )
CALL T3XYZ (PX6,PY6,Pi6,THYI )
CALL MATHCLC (T6,TRPY,TXYZ )

C Compute the overall transformation, T:

CALL MATMCLZ ( T, T0 )
CALL MATMULE (T, T1 )
CALL MATHCLE (T, T2 )
CALL MATMCLX ( T, T3 )
CALL MATMILE (T, T4 )
CALL MATICLE ( T, T5 )
CALL M2TMCLE ( T, T¢ )
RETURN

END

C MRk kR ARk A R Rk Rk Rk R R R AR R R AR RN AR RNk Rk Rk kR Rk kk Rk
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APPENDIX D

PROGRAM WIRE

C This program generates a set of joint angles for the calibration
C of the PUMA manipulator using a wire potentiometer attached to
C the end point of the manipulator.

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=6, M=LDFJAC, N=6)

REAL#$ DT1, DI2, DT3, DT4, D15

REAL*8 DD1, DD2, DD3, DD4, DDS

REAL*8 AAl, AA2, AA3, AMd, AXS

REAL*S AL, AL2, AL3, AL4, ALS

REAL#S BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, Pi6, PY6, Pl6

REAL*8 ¥w, YW, IW

REAL*8 RUXYZ(3),UXY2(3),XYZ,DALPEA,DBETA,DGAMM: , ANCH
REAL*8 PDIRCOS,NDIRCOS, PNGLBTWN ,NNGLBTWN

INTEGER INFER,IER,IOPT,NSIG, MAXEN

REAL#*8 FJAC(LDFJAC,N}, XJTJ((N-1)%K 2], XJAC(LDFJAC,N}
REAL*§ PARM(4),F(LDFJAC), WORK({(5*N)+{2*M)+((N-1)*N 2))
REAL*8 X{N),XD,¥D,A2

REAL*8 R,PHIMAX,PHIMIN, THETAMAX, THETAMIN, PEI, TEETL
REAL*8 ¥B,YB,IB,SSQ,RR,MAGNX,MAGN1,QQ,PI

REAL*8 RAD,TX,GAMMA,DPSI,DPHI,OT,0TY

EXTERNAL PUMA_ARM

REAL*8 OTTPOP,00P,T6(4,4)

INTEGER I, J, K

REAL*8 TDES(4,4), QMAX(6), QMIN(6), SCALE, DANGLE, DLENTH, NUM

COMMON/LEN/ PI,R,T6,THETAU, THETAL, TTP

COMMON /PDATA/ DANGLE, DLENTH,TDES

COMMON /KIN/ DT1,DT2,DT3,DT4,DT5,
AL1,AL2,AL3,AL4,ALS,
AAL,AA2,AA3,AA4 MRS,
DD1,DD2,DD3,DD4,DD5,
BL1,BL2,BL3,BL4,BLS,
Xw,Yw, Iw,
DFé6,TH6,516,PX6,PY6,PL6

[- o o - o B - o - o}

RAD=25.40d0. 2.0d0
PI=4.0d0*DATAN(1.0DC)
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C Initialize data variables
0OBS=C

C Open data files for input

OPEK (10, NAME='PUMA-SOLN.DAT’, STATUS='NEx',
OPEN (9, N2ME="INPUT.DAT', STATUS='CLD';

C Read input kinematic data

READ {9,%)

READ (9,%) Xw,Yw, W

READ (9,#*) DT1,DD1,AAl,ALL,BLY
READ (9,%) DT2,DD2,AA2,AL2,BL2
READ (9,#%) DT3,DD3,A43,AL2,BLE
READ (9,%) DT4,DD4,AA4, AL4 BL4
READ (9,*) DT5,DDS,A25,A15,BLS
READ (9,%)

READ (9,*) Dfe,TES,SI€,PX6,PY6,Plé
READ (9,%)

READ (9,%) NOBS,QP,DANGLE,DLENTH, MAGNY MACGN.

CLOSE (9}
C Adjust nominal values

XW=X¥: DLENTE
fw=Yw-DLENTE

DT2=DT2+DANGLE
DT3=DT3+DANGLE
DT4=DT4+DANCLE
DT5=DT5+DANGLE

AL1=AL1+DANGL
AL2=AL2 -DaNGLE
AL3=AL3+DANGLE
AL4=AL4+DANGLE
AL5=ALS+DANGLE

AA1=AR1+DLENTH
AA2=AA2+DLENTH
AA3=AA3+DLENTH
AA&=AA4+DLENTH
AAS=AAS+DLENTHE

DD1=DD1+DLENTH

DD3=DD3+DLENTE
DD4=DD4+DLENTE
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DD5=DD5-DLENTE
BL2=BL2+DANGLE

DF6=DF6+DANGLE
PX6=PX6+DLENTE
P76=P16+DLENTH

C Set limits on spherical coordinates

PHIMAX=90.0
PHIMIN=0.0
TBETAMAY=0.0
THETAMIN=360.0

C Get random number seed

WRITE (6,%) ‘Type in a 6-digit random number seed’
READ (5,#%) ISEED

C Start of main locp
1010 OBS=0BS+1
C Set joint angles to zero

Do I=1,N
X{I1}=0.0D0
ENDDO

C Get random spherical coordinats for end effector

1000  CALL RANDOM (ISEED,NUM)
PHI=PHIMIN+(PHIMAY-PHIMIN) *NUH
CALL RANDOM (ISEED,NUM)
THETA=THETAMIN+(TEETAMAX-THETAMIN) *NUMH
CALL RANDOM (ISEED,NUM)
0=100.0+900.,0*NUK
C Calcujate end point of the manipulator

XB=Q*COSD{ TEETA ) *SIND(PEI)
YB=Q*SIND(THETA)#SIND(PHI)
IB=Q*CQOSD(PHI)
IF (ZB .LT. 50.0) GOTO 1000

C Calculate unit vector between base and end effector
YYZI=DSQRT(XBx#2+YB##2+]B¢%2)

UXYZ(1)=-XB/XY.
UXYZ{2)=-YB/XYL
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CXYZ(3)=-1B, XY
C Calculate direction angles from direction cosines

DALPHA=DACOS(UXYZ(1))
DBETA=DACOS(UXYZ(2))
DGAMMA=DACOS(UXYZ(3))

C Perturb direction anqgles

33 CALL RANDOM{ISEED,NTH,
ANUM={0.50D0-NUK) *P1 /6. 0DC
RUXYZ(1)=DCOS(DALPHA+ANGH)
CALL RANDOM(ISEED,NUM)
ANUM=(0.50D0-NUM) #P1 /6. 0DO
RUXYZ(3)=DC0S( DGAMMA+ANUM )
CHECK=RUXYZ(1)%#24RUXYZ(3)4%2
IF (CBECK .GT. 1.0D0) GOTO 33
PDIRCOS=DSQRT(1.0D0-RUXY2(1)**2-RUXYZ(3)**2)
NDIRCOS=-PDIRCOS
PNGLBTWN=DACOS(CXYZ (1)*RUXYZ (1)+0XYS(2)*PDIRCOS+UXYZ(3)
& *RUXYZ(3))
NNGLBTWN=DACOS(UXYZ(1)*RUXYZ1)+UXYZ(2)*NDIRCOS+UXYZ(3)
& *RUXYZ(3))
RUXYZ(2)=PDIRCOS
IF (DABS(PNGLBTWN) .GT. DABS(NNGLBTWN)) RUXYZ(2)=NDIRCOS

C Establish desired tool pose

Do 1I=1,4
DO JJ=1,4
TDES(ii,331=0.0
ENDDO
ENDDO

TDES(1,3)=RCXYC(1)
TDES(2,3)=RCXYZ(2)
TDES(3,3)=RUKYZ(3)
TDES(1,4)=XB
TDES(2,4)=YB
TDES(3,4)=IB
TDES(4,4)=1.0

C Call IMSL ZXSSQ for inverse kinematic solution

NSIG=4
EPS=0.0
DELTA=0.0
MAXFN=500
I0PT=1
IXJAC=LDFJAC
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CALL ZXSSQ(PUMx_ARM,M N, NSIG,EPS,DELTA,MAXFN,IOPT,PARM, X,
& SSQ,F,XJaC, IXJaC, XJTJ, WORK, INFER, IER)

C Check for sinqularities

IF (SSQ .GT. 0.00001) GOTO 1000
C Compute wire length

CALL LENGTH(OTTPOP)
C Inject noise on wire length

CALL RANDOM({ISEED,NUM)
OTTPOP=OTTPOP+( (0.5-NUM)#*2.0) *M2GNX

C Write simulation data to file

WRITE(10, *)OTTPOP
WRITE (10,8881 X(1), X(2), X(3}, X(4), X(5), X(6)
888 FORMAT ( 6F12.3 )

C Continue for other end effector positions
IF (OBS .LT. NOBS) GOTO 1010

CLOSE (10)
END

C kkkhnkkhhddhkhhkhhhbtRbbhhhkkkkdhkehhhrrrkhktkkhbdkhkkkkhkkekkkkkkkhds

SUBROUTINE PUMA_ARM (X M N,F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine 1XS5Q. It is the forward kinematic solution for
C the PUMA manipulator.

INTEGER N, N
REAL#*8 X{N), F(M)

INTEGER II, JJ

REAL*8 DT1, DT2, DT3, DT4, D15

REAL#8 DD1, DD2, DD3, DD4, DD5

REAL#8 AAl, AA2, AA3, A4, AAS

REAL*S AL1, AL2, AL3, AL4, ALS

REAL#*8 BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, Pi6
REAL*8 XW, YW, IW

REAL#8 THi, TH2, TH3, TH4, THS
REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
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REZL®S T514,4), T6(4,4), TRPY(4,4), TYYI(4,4)
REAL*8 TIM2T{4,4), T(4,4),PI,THETAC, THETAL, TTP
REAL*8 DISQ,DIS,SUH

INTEGER I, J, K
REAL*8 TDES(4,4), DANGCLE, DLENTE, R

COMMON 'LEN/ P1,R,T,THETAU, TEETAL,TTP

COMMON /PDATA/DANGLE, DLENTH,TDES

COMMON /KIN DT1,DT2,DT3,DT4,DTS,
ALL,AL2,AL3,AL4,ALS,
AML,AR2, A3, MMM, A2S,
DD1,DD2,DD3,DD4, DS,
BL1,BL2,BL3,BL4,BLS,
YK, YW, 2K,
DF6, TH6,S16,PY6,PY6,PL6

[ oI ol - B - o B - LB - o

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAI/1,0,0,0,0,1,0,0,0,0,1,0,0,

¢ Initialize the T matrix to an I matrix
DO Il =1,4
DO JJ = 1,4
T(II,J3J) = TIMAT(IL,dJ)
ENDDO
ENDDC

C Manipulator joint angles

TB1
TH2
TH3
TH4 = DT4
THES = DT5
FI6 = D6

DT1
D12
DT3

(1
X2y
X3
IEN
X(59
X(6)

R e

C Compute the T matrices, Tl thru Té:
CALL T3XYZ ( XW, Yw, IW, TO )

CALL TRANSFORM ( AL1, AAl, DD1, THI,
CALL TRANSFORM ( AL2, AA2, DD2, THZ,
CALL TRANSFORM ( AL3, AA3, DD3, TH2,
CALL TRANSFORM ( AL4, AA4, DD4, THY,
CALL TRANSFORM ( AL5, A25, DD5, TES,

CALL T3RPY ( FI6, THE, SI6, TRPY )
CALL T3XYZ ( PXé, PY6, Pi6, TXYZ )
CALL MATMULC ( T6é, TRPY, TXYI )

0,0,1’

BLL, T1 )
BL2, T2 )
BL3, T3 )
BL4, T4 )
BLS, T5 )
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C Compute the overall transformation, T:

CALL MATMTLE ( T, TO )
CALL M:TMTLY (T, 11 )
CALL MATHGIX (T, T2)
CALL MATMTLA ( T, T3 )
CALL MATMTLE (T, T4 )
CALL MATMCLE (T, TS5 )
CALL MATMTLY ( T, TE

C Calculate the function F

F(1)=T(1,4)-TDES(1,4)
F(2)=T(2,4)~TDES(2,4)
F(3)=T(3,4)-TDES(3,4)
F(4)=(T(1,3)-TDES{1,3))%100.0D0
F(5)=(T(2,3)-TDES(2,3))%100.0D%
F(6)=(T(3,3)-TDES(3,311%100.0DC

C Calculate residual

SUM=0.0D0

DO 1JKL=1,6
SUM=SUM~F(IJKL)#*2

ENDDC

WRITE(6,#%)DSQRT(SUM) /6.0DC

RETCRN
END

C RRFA AR R KRR KRR IR R SRR AR KRR AR AR R R AR R KRR R AR KR KRR AR KRR AT T XK
SUCROUTINE RANDOM (x,7)

C This subroutine generates random numbers in the range 0-1
C using a s.pplied seed x, the returned random number being :.

REAL FH, FX, I
INTEGER &, X, I, M

DATA 1.1/

IF (T .EQ. 0 ) GO TO 1000
I=0

M= 2 %+ 20

FK= X

h: 2%10 + 3

1000 X= MOD( A#X M)
FY= X
(s PXPM
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RETURN
ERD

C kkrxkXkkARXTRIRATXRIRRAKARI IR AR R CRRR ARk AR AR R I R AT R R ARk Rk Rk Ak k%

C

C This subroutine calculates the length of wire between the end effector
C frame and measurement base frame. The subroutine utilizes IMSL routine
€ 71¥SsQ for solution of the length along with subroutine MINLENTE

SUBROCTINE LENGTR(OTTPOP)

REZL*E T6:4,4),T6INV(4,4)

REEL#8 EPSN,DELTAN,FARMN(4),XN(4),SSQN, FN(6),XJACH.6,4)
REAL*8 WORKN(42),XJTJIN(10},XUUVP(§)

INTEGER MN,NN NSIGN, MAXENN,IOPTN,IXJACN,INFERN,IERN
REZL*& PI,R,X,Y,2.00P,ALUV(4),XUUV(4),X0,Y0,P6141,X0Y0
REAL*§ X6Y6,20,0T.POP,0TSCAL,OT,XCi4), TTP, TTPSCAL
REZL*8 THETAU,TRETAL

COMMON 'LEN ~ PI,R,T6,THETAC,TEETAL,TT?

EXTERNLL MINLENTE

C Set 1XSSQ paramsters

MN=6

NN=4

NS1GN=4
EPS=0.0DC
DELTAN=0.0DC
MAXFNN=100:
IXJACN=6
10PTN=1

PI=4.0DO*DLTAN(1.0DC)
R=12.70DC

C Calculate initial values for IXS3Q vector ¥
X=T6(1,4)
Y=T612,4)
=T6(3, 4
OOP=DSQRT [ X#%2+Y#%2+ k42
C Calculate unit vector from base frame origin to end effector origin
XLCVil)=X/00P
ALLVi2)=Y/00P
XLEV{3)=Z/00P
KLCV(41=1.0DC

C Zerc T6 inverse matriy
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DO I=1,4
00 J=1,4
T6INV(I,d)=0.0D%
ENDDC
ENDDO

C Compute inverse of T6 matrix

D0 I=1,3
D0 J=1,3
T6INV(I,J)=T6!J,1)
ENDDO
TEINV(1,4)=T6INV(1,4)-T6{1,4)%T6(1,1)
TEINV(2,4)=T6INV(2,4)-T6(1,4)¥T6(1,2)
TEINY(3,4)=T6INV(3,4)-T6(1,41%T6(1,3)
ENDDO
T6IN.(4,4)=1.00%

C Calculate coordinates of end effector unit vector in measuremen
C frame coordinate

TP =X-XLUV D)

XOUVP(2)=Y-XLUV{2)

X0CVP{3)=2-XLVi3)
VP(4)=1.0DC

C Convert coordinates to end effector frame reference

D0 I-1,4
XUUV(1)=0.0D:
DO J=1,4
XGUVI D) =XUTY (1) +TOINV(I,J) % (XUUVPid 1)
ENDDO
ENDDC

C Initialize 2XSSQ X vector
XN(1=XLOVIIItR
XN(.,-XLOV(2)#R
IN(3)=XUTV(1)#*R
XN{4)=XUUV({2)*K

C Call 2X85¢ for lenmgth calculation

CALL ZXSSQ(MINLENTH,MN, NN, NSIGN,EPSN,DELTAN,MAXFNN,IOPTN,
4 PARMN, XN, SSQN, FN, XJACN, IXJACN, XJTJIN, WORKN , INFERN, IERN)

OTTPOP=(THETAL+THETAU) #R+TTP

RN

-2
27
-3
7
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C txkkxkkkkkkdhkarhahkthkthkbthdrdhdhkibdeaddkhrhhdbhkthkhkarkknss

C

C
SUBROCTINE MINLENTH(XN,MN,NN,FN)
INTEGER MN NN
REAL*8 XN(NN),FN(MN},ERROR
REAL#8 PI,R,X,Y,Z,00P,XLCV(4),XUCV(4),X0,Y0,P6(4),X0Y0
REAL*8§ XéYc,10,0PTPSCAL,OPT,0TSCAL,OT, XU 4),TTP, TTPSCA
REAL*8 T6(4,4),P6P(4),THETAU, THETAL  MAGUL,MAGCT,TXC
REAL#*8 UY0,020,XCP(4},U%6,CY6,006,UXT,CYT, LT, 207
COMMON,'LEN/ PI,R,T6,THETAC, TEETAL, TTP

C Initialize variables based on current value of X

X0=XN(1)
YO=XN: 21
P6(11=XN:3}
P6(2)=XNi4)
P6P(1)=PE(1)
PEP(2)=P6{ 2!

C Calculate length in each frames yv plane

X0YOQ=DSQRT ( X0%#2+Y(*#2)
X6Y6=DSQRT (P61 1)%%2-PE(2}%%2)

C Calculate corresponding z value

P6(3)=DSQRT(2.0DO*R*X6Y6-PE(1)%%2-P6(2 %42}
20=DSQRT | 2.0DO*R*X0Y0-X0x*2-Y0xx2)

C Calculate angle theta for arclength calculations

THETAC=DASIN(P6(3) /R}
TBETAL=DASIN{Z0 R}

C Calculate intermediate z value for unit tangent vectors

P6P(3)=X6Y6*DTAN(PI/2.0D0O-THETAL)
10P=X0YO*DTAN(PI /2.0DO-THETAL)
MAGUL=DSQRT(XO%#2+Y0k#2+I0P¥*42)
MAGUU=DSQRT(P6P(1)#%2+P6P(2)#*2+P6P(3)%+2)
0X0=X0/MAGLL

0Y0=YO/MAGUL

070=20P/MAGLUL

C Transform unit vector in FE coordinates to FM coordinates
P6P(4)=1.0D0
DO I-1,4
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XUP(11=0.0D0
DC J=1,4
AUP(I)=XCPiT)+T611,J)%PeP:J)
ENDDC
ENDDOC

C Transforz FE tangent point to FM coordinates

UX6={XCP{1)-To(1,4}) /MAGLT
CY6=(XUPi2)-T5(2,4)) /MAGLT
026=(XUP(3)-T6(3,4)) /MAGLT
P6(4)=1.0DC
DO I=1,4
XCi11=0.0DG
DC J=1,4
YC(D=XCUI+TotI,J0%Pc ., J
ENDIX
ENDDC

C Calculate tangent to tangent distance
TTP=DSQRT( (XU(1)=X0)%#2-(XU{2}-YOX#2+{X13)=10 %22
C Calculate tangent point to tangent point unit vector

CXT=(XCi{1)-X0) /TTP
CYT=(¥C12:-Y0 TIF
CIT=(XCi3)-20) 'TTP

C Calculate minimizing functiors

FNi13=CYT-CX0
FN: 2)=UYT-Lh0
FN:31=CIT-C20
FNi 4)=CYT-Lie
FN(5)=0YT-CYe
FN(6)=LIT-Lle

C Calculate residual and write to screen

ERROR =0.0D0
DO I=1,6
ERROR=ERROR + FN{I)#%2
ENDDO
WRITE(6, %) ERROF
RETURN
END
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APPENDIX E

PROGRAM WID<

C Robct Identification using the Non-linear Least Squares method.

C This version of prograk IDé is for the wire potentiometer method.
C Simulation data is read for the PUMX manipulator freor

C the data file PUMA-SOLN.D2T

C

C SET LDFJAC = NUMBER OF OBSERVATIONS

INTEGER LDFJAC, MM, M, NN, N, NSIG, MiYFN, IOPT, I¥JiC, INFER, IEF
INTEGER I, J, K, NOBS, MXNOBS

PARAMETER (LDFJAC=55, MM=LDFJAC, WN:=24)

PARAMETER (MAYNOBS=200)

REAL*8 FIAC(LDFJAC,NN1, XJTJ((NN-11#NK )

REAL*3 PARM:4), F(LDFJLC), WORK. (S*NK-(2#Mb1-( (NN-11#N% 21
REAL*S X(NN),XD,YD,TX,DPSI,GAMM, DPEI, 0T, RAD

REAL*8 DANGLE, DLENTH, 1¢, DQ, EPS, DELTX, SS%

REAL*8 SQERR!, SQERR2, PI

REAL*S Yu,¥w,lw

REAL*S DT1, DI2, DT3, D14, DI5

REAL*3 DD1, D2, DD3, DD4, DO%

REAL*S AR1, A2, A3, A4, A2S

REAL*8 ALL, AL2, AL3, ALY, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 FI6, DFé, THs, SI&, Pxé, Pic, Pit

REAL#S MAGNY,MAGN!

REAL*8 TETI(MAXNOBS), TET2(MAYNOBS), TET3(MAYNOBS:
REAL*8 TET4(MAXNOBS), TETS(MAXNOBS:, TET6(MLYNJBS)

REAL*8 R,OTY(MAXNORS)

COMMON /PDATA NOBS,TETL,TET2,TET3,TET4,TETS, TET6, 0T, RAD

COMMON /KIN' DT1,DT2,DT3,DT4,D1<,
AL1,AL2,AL3,AL4,ALS,
AR, AA2,AA3, AR, A25,
DD1,DD2,DD3,DD4,DDS,
BL1,BL2,BL3,BL4,BL5,
X, YW, W,
DFé6,TH6,S16,PX6,PY6, P16, Pl

ay oy A o

EXTERNAL PUMA_ARM
C Open data files for inputs and results

OPEN (8, NAME='RESULT.DAT', STATUS='NEw’)
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OPEN (9, NAME='PUM:-SOLN.DAT', STATUS="OLD’)
OPEN (10,NAME='INPCT.DET', STATUS='QLD’)

PI=4.0DO*DATAN;1.0DC)
RAD=12.70DC

¢ Read input parameters

REZD (10,%) )
READ (10,%)Xw,Yw, i

RELD (10,%) DT1,DD1,AALl,ALY,BL1

READ (10,*) DTz ,DD2,AA2,AL2,BL2

READ (10,%) D73,DD3,AA3,AL3,BL3

REXD (10,%) DT4,DD4 AA4,AL4,BLY

READ (10,%) DT5,DD%,AA5,AL5,BiS

REED (10,%]

RELD (10,* DF¢,TRe,SI6,PXé,Prc,Ple

RELD (10,%)

REZD (10,*) NOBS,QPk,DANGLE,DLENTH,MAGNY, MAGKL

CLOSE (104
€ Initiailze data variabies

Xt1i=¥w
Xoi=Tn

Xt31=Xn

Yid=2il
Xi5i=ALl

Y161=D72
X(7)=482
X(8)=AL2
X(91=BL2

X10=DT2
X111)=D3
X(121=213
X{13)=AL3

X(14)=DT4
X(15)=DD4
X(16)=AA4
X(17)=AL4

X(18)=DT5
X(19)=DD5
X{20)=AA5
£(21)=AL5
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£122)=Df¢
X(23)=P¥6
X(24)=P¢

C Read joint data and wire length.

DO J = 1, NOBS
REXD (9,*) TETI(J), TET2{04, TET3:2y, TET4(J), TETS(J), TET6(J)
READ (9,%) OT¥1J)
0T¥(J1=07T%(J)+25.40DC
RED (9,%)
ENDIC
CLOSE (9)

C Set parameters for IMSL routins [YSST for nor-linear identificatior

NSIG=4
EPS=C.0
DELTE=0.0
WiXFN=1000
1071
IXNJAC=LDEC:C
M=NCBS

CALL ZYSSQ.PUMA_ARM MM, NN

(NSIC,EPS, DELTE MAYEN ICPT,
& PARM,X,55Q,F,FJI

LC, IXJAC, XJTJ, WORK , INFER, IER:

IG
i

C Save results to data file "RESVLT.DAT

WRITE (£, %)

WEITE (8,%) 'Yw, Yw, In’

WRITE (8,93 Xil1, Xi21, ¥

WRITE 1§,%)

WRITE (&,%2 'DT1, DDi, ALl, ALl, BLl'

WRITE (8,931 0.0, 0.0, X(4), %(5), 0.0

WEITE (&,%)

WRITE (8,%) 'DT2, DDZ, A2, AL2, BL2'

WRITE (8,93) X(6), 0.0, X(7}, X(8), X(9!

WRITE (8,%)

WRITE (8,*) 'DT3, DD3, AA3, AL3, BL3'

WRITE (8,93) X(10), X(11}, X(12), X(13), 0.0

WRITE (8,%)

WRITE (8,%) 'DT4, DD4, AA4, AL4, BL4'

WRITE (8,93) X(14), X(15}, X{(16}, X(17), 0.0

WRITE (8,%)

WRITE (8,%) 'DIS, DD5, AAS, ALS, BLS’

WRITE (8,93) X(18), ¥(19), X(20), X(21}, 0.0

WRLTE (8,%)

WRITE (8,%) ' DF6, TR, SI6, PX6, PY6, Pi6’

WRITE (8,93) X(22), 0.0, 0.0, x(23), 0.0, x(24)
93 FORMAT(2X,6(1X,F10.4))
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WRITE (8,%)
WRITE (8,*) 'INFER, IER, NOBS NSIC’
WRITE (8,*) INFER, IER,NOBS,NSIC
WRITE (6,%) 'INFER, IER,NGBS,NSIC’
WRITE (6,%) INFER, IER,NOBS,NSIG
WRITE (8,*)

CLOSE (81

C #xxx

C This
C the
C the

s oooanoa oo

ENT
AR AR AR A R AR RR R RN R R R KA KR AR R KRR TR R AR AR ANE AR
SUBROUTINE PUML_ARM (X, K, N, Fi

subroutine calculates the non-linear function for the use ¢f
IMSL routine IX537. It is the forward kinematic solutior for
PUM: manipuiater.

INTECEE M, N

INTEGER 11, 3O

INTEGEF I, J, K, NOBS, MAXNCES

PARAMETER (MAXNOBS=207

REAL*S X(N), FiM:

RELL=E Xw, Yw, Tk

REAL#8 DT1, DT2, D13, D14, D13

REAL#8 DD1, DDZ2, DD3, DD4, DDS

REAL*E AAL, AA2, AA3, AR4, M5

RELL*8 ALL, AL2, AL3, AL4, LALS

REAL*8 BL1, BlL2, BL3, BL4, BLS

REAL*8 FI6, DFé, THE, SI6, PXe, PYé, Plé

REAL*8 THi, TH2, TH3, TE4, THS

REAL#8 TO4,4), Tled, 4y, T2u4, 43, T34, 4), T4, 4
REAL*8 TS(4,4), T6(4,4), TRPY(4,4), TXYI(4,4
REAL*8 TIMAT 4,4y, Ti4,4),XT,¥T,2T,5C,YC, 42,0
REAL#8 XD,YD,DPSI,RAD,GAMMA,DPHI,OT,TX,0)

REAL*8 TET1(MAYNCOBS), TET2(MAXNOBS), TET3(MAXNORS)
REAL*Z TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS!
REAL*8 RR ,OTX(MAXNOBS),PIK,rus, sumsq

REAL*8 OTTPOP,PI,R,00P,THETAU,THETAL,TTP

COMMON /PDATA. NOBS,TET1,TET2,TET3,TET4,TETS,TET6,0TX,RAD

COMMON /KIN; DT1,DT2,DT3,DT4,DT5,
AL1,AL2,AL3,AL4,ALS,
AAL,AA2,AA3,AR4, MRS,
DD1,DD2,DD3,DD4,DDS,
BL1,BL2,BL3,BL4,BL5,

XN, ¥w, I¥,
DF6,TH6, SI6,PX6, PY6, P36, PI
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C Initialize the TIM:T matrix to an I matrix:

DxTA TIM:I.1,0,9,0,0,1,0,0,0,0,1,0,0,0,0,1

PIK=PI
C Set parameters for the manipulater:
Yw = X1
Yo = Xi 2,
In = X(3)
ALl = X
ALL = X5
2= XIg
A2 = N7y
A2 =Y gy
BL2 = ). %
DI = ¥l
DE3 = X1l
FYREEE (RS
AL3 = X1
D74 = Xeldn
DD4 = Xi1%
A4 = X 18,
ALY = Xil™y
0TS = Xulf,
DDS = X(19)
A5 = Y20
ALS = Xi21)
DEn = Y221
PX6 = X¢23)
P56 = X(24)

C Loop NOBS times

K=0
DO J = 1, NOBS

C Initialize the T matrix to an I matrix

DO IT =1,4

DO JJ=1,4
T(II,J3) = TIMAT(IL,d)
ENDDO

ENDDO
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C Manipulator joint angles

TEI = DT1 + TET1(J)
TH2 = DT2 + TET2(J)
TH3 = DT3 + TET3(J)
TH4 = DT4 + TET4(J)
TES = DTS + TETS(J)
FI6 = DF6 + TET6(3)

C Compute the T matrices, Tl thru Té:
CALL T3XYZ (Xw,YW,ZIw,TO)
CALL TRANSFORM ( AL1, AAl, DDI, TH1, BL1, T1 )
CALL TRANSFORM ( AL2, A%2, DD2, TH2, BL2, T2 )
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3 )
CALL TRANSFORM ( AL4, Ar4, DD4, TH4, BL4, T4 )
CALL TRANSFORM ( ALS, AAS5, DD5, THS, BL5, 15 )
CALL T3RPY ( FI6, THs, SI6, TRPY )
CALL T3XYI ( Pxt, PY6, Pi6, THYI )
CALL MATMULC ( T6, TRPY, TXYI )

C Compute the overall transformation, T:

CALL MATMTLA ( T, TO )
CALL MATMULA ( T, T1 )
CALL MATMULA ( T, T2 )
CALL MATHULA ( T, T3
CALL MATMULA ( T, T4 )
CALL MATMULE ( T, TS )
CALL MATMULE ( T, T6 )

C Calculate the "nominal® wire length based on current parameter values
CALL LENGTH(OTTPOP,T)
C Calculate the function F
F(J}=DABS(OTTPOP-OTX(J)}
C End the do-loop for counter J
ENDDO
C Compute RMS error
SUMSQ=0.0D0
DO J=1,NOBS

SUMSQ=SUMSQ+F(J)#F(J)
ENDDO
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RMS=DSQRT ( SUMSQ/NOBS )
WRITE(6,%)RMS

RETURN

END

C *kkkkkkkkkEkkehkRkktkhkkRhkRkkRRXTRRRARRRIARI AR AR R AR IR KR TAR RIS XKL

C This subroutine calculates the length of wire from the base fixture to
C the manipulator endpoint fixture based on the current manipulator

C endpoint pose (T6 = T). This subroutine uses a renamed version of INS.
C routine IXSSQ (ZXSSQL) to minimize the sum (component by component) of
C unit vectors describing the tangent points for both upper and lower

C fixtures. Subroutine 2XSSQl utilizes subroutine MINLENTH to evaluate
C the "F" functions.

SUBROUTINE LENGTH!OTTPOF,T)

REAL*8 T6(4,4),T6INV(4,4),T(4,4)

REAL*8 EPSN,DELTAN,PARMN(4),XN(4),SSQN,FN(6),XJACN(6,4)
REAL*8 WORKN(42),XJTJN(10),XCCVP(4)

INTEGER MNN,NNN,NSIGN,MAXFNN,IOPTN,IXJACN, INFERN, IERN
REAL*8 PI,R,X,Y,Z,00P,XLUV(4), XUUV(4),X0,Y0,P6(4),X0Y0
REAL*8 X6Y6,0,0TTPOP,OTSCAL,OT,XU(4),TTP, TIPSCAL
REAL#8 THETAC,THETAL

COMMON ‘LEN. PI,R,T6,THETAC,TEETAL,TTP

EXTERNAL MINLENTE
DO I=1,4
DO J=1,4
T6(I,3)=T{I,
ENDDC
ENDDO
MiN=¢6
NNN=4
NSIGN=4
EPSN=0.0D0
DELTAN=0.0D0
MAXFNN=1000
IXJACN=6
I0PTN=1
PI=4.0DO*DATAN(1.0D0)
R=12.70D0

1=T6(1,4)

Y=T6(2,4)

1=T6(3,4)
OOP=DSQRT ( X##2+Yk#2+7#%2)
XLOV(1)=X/00P
XLOV(2)=Y/00P
XLUV(3)=1/00P
XLUV(4)=1.0D0

DO I=1,4
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D J=1,4
T6INv(1,d)=0.0D0
ENDDO
ENDDO
00 1=1,3
0 J=1,3
T6INV(I,3)=T6(J,1)
ENDDO
TEIN:(1,4)=TEINC(1,4)-T6(1,4)4T6(1,1)
TEINV(2,4)=T6INV(2,4)-T6(I,4)#16(1,2)
T6INV(3,4)=T6INV(3,4)-T6(I,4)4T6(1,3)
ENDDO
T6INV(4,4)=1.0D0
YUTVP{1)=X-XLCV (1)
YUCVP(2)=Y=XLLT(2)
XUUVP(3)=2-XLUV (3}
XUUTPi 4121000
0 I=1,4
XUCY(1)=0.0D0
00 J=1,4
XUUV(1)=XC0Y (1)+TOINV( T,V (ATUTPII )
ENDDO
ENDDO
XNi1)=XLOV(1)#R
XN(2)=XLOV(2)%R
XN(3)=XUUV(1)*R
YN 4)=5UTV(2)%R

C Call renamed version of ZXSSQ

CALL IXSSQI(MINLENTH,MNN, NNN, NSIGN,EPSN,DELTAN,MAXENN, IOPIN,
& PARMN, XN, SSQN, FN, XJACN, IXJACN, XJTJN, WORKN, INFERN, IERN:

C Calculate wire length
OTTPOP=(TBETAL+THETACU) *R-TTF
RETURN
END

C kkkdtdkethkdhddbhadbddddbanbadbbedbdhhebhrddiddebhibbnhdthdddoddtts

SUBROUTINE MINLENTH(XN, MNN,NNN,FN)

INTEGER MNN,NNY

REAL*8 XN(4),PN(6), ERROR,AAA,BBB

REAL*8 PI,R,X,Y,Z,00P,XLOV({4),XUCV(4),X0,YO0,P6(4),X0Y0
REAL*8 X6Y6,20,0PTPSCAL,OPT,0TSCAL,CT,XU(4),TTP, TTPSCAL
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REZL*8 T6(4,4),P6P{4, TEETAU, THETAL ,MAGUL ,MAGUL,UXC
REAL*¢ CYO0,CZ0,XCP(4),CX6,0Y6,026,0%T,UYT,CIT,20P

COMMON 'LEN " PI,R,T€,THETAL, THETEL, TTP

X0=XNi1)
YO=¥Ni2)
P6(1)=XN(3)
Po{2)=XN' 4,
P6P(1)=P6{1}
PEP(2)=P6( 2}

X0Y0=DSORT{ X0*%2+Y0%%2)
X6Y6=DSQRT (PO (1)1%%2+P6(2)¥%2)
AAA=2 . ODO*R*X6Y6-P6({1)%%2-P6(2) %42
BBB=2.0DO*R*¥0Y(0-X0%*2-Y0x*2
IF {AAA LT, 0.0D2) THEN

P6(3)=R
ELSE

P6(3)=DSQRTi AA2)
ENDIF

F (BBB .LT. 0.0DG; THTN

20=R

ELSE

$0=DSQRT BBB!
ENDIF
THETAU=DASIN(P6(3) R}
THETAL=DASIN{Z0/R)
P6P13)=X6Y6*DTAN(PI 2.0D0-THETAL)
Z0P=X0YO*DTAN(PI/2.0D0-THETAL)
MAGUL=DSQRT (X0 %2+Y()%x%2+70Px%2)
MAGCU=DSQRT{P6P(1)%#24PEP(2)%%2+PEP(2)%42)
UX0=X0 ‘MAGUL
UY0=YO /MAGTL

UZ0=I0P MAGUL

C Transfore tangent vector in FE coordinates to FM coordinates

P6P(41=1.0D0
Do I=1,4
fUP(1)=0.0D0
DO J=1,4
XOP(D)=XCP(I)+T6(1,J)%P6P( I}
ENDDO
ENDDO

C Calculate upper tangent vector in FM coordinates

UX6=(XUP(1)-T6(1,4)) /MAGLL
UY6=(XCP12)-T6(2,4)) /MAGLT
U26=(XUPI3)-T6(3,4)} /MAGLT
P6{4)=1.0D0
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DO I=1,4

X0(I)=0.0D0

DO J=1,4

XU(T)=XU(I)+T6(1,J)*P6(J)

ENDDO
ENDDO
TTP=DSQRT( (XU(1)-X0)**2+(XU(2}-YO}**2+(XU(3)-20)%*2)
UXT=(XU(1)-X0}/TTP
0YT=(XU(2)-Y0)/TTP
027=(XU(3)-20)/TTP

C Calculate minimizing functions

FN(1)=0XT-0X0
FN{2)=UYT-UY0
FN(3)=02T-020
FN(4)=UXT+UX6
FN(5)=0YT+UY6
FN(6)=UZT+UZ6

C Calculate residual

ERROR =0.0D0
DO I=1,6
ERROR=ERROR + FM(I)#%2
ENDDO
WRITE(6,*)ERROR

RETURN
END
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APPENDIX F

C SRERRRRRKRRRRRRRRERAREARERERERRARTRRARROARRRRRIESRRRREDARR AR R IR IRE
PROGRAM WVERIFY

C This program generates the six-dof pose error for the PUMA manipulator.
C It contains the identified calibration parameters and the exact parameter.
C It uses a data file of verification joint angle sets POSEVER.DAT, and the
C file RESULT.DAT from the program ID6.

INTEGER I, J, K, NPOSES, N

REAL*8 DANGLE, DLENTH

REAL*8 DT(5),DD(5),AA(5),AL(5),BL(5),MEAS(6)

REAL#8 EDT(5),EDD(5),EAA(5),EAL(S),EBL(5),EMEAS(6)
REAL*8 EDF6,EF16,ETH6,ESI6,EPX6,EPY6, EPL6

REAL*8 THETA(1000,6), TDELTA(4,4)

REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4)

REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL#*8 TIMAT(4,4), T(4,4), ET(4,4)

REAL*8 DT1, DT2, D13, D14, DTS

REAL*8 DD1, DD2, DD3, DD4, DD5

REAL*8 AAl, AA2, AA3, AM4, AAS

REAL*8 AL1, AL2, AL3, AL4, ALS

REAL*8 BLi, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, Pi6
REAL#8 XW, YW, IW

COMMON TIMAT,THETA

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,¢,9,0,1/
C Open data file
OPEN (9, NAME='POSEVER.DAT’,STATUS='OLD')
OPEN (10, MAME="INPUT.DAT’, STATUS='OLD’)
OPEN (11, NAME=/RESULT.DAT’, STATUS='OLD’)
C Read input parameters
READ (10,%)
READ (10,%) MEAS(1),MEAS(2),MEAS(3),MEAS(4),MEAS(5),MEAS(6)
READ (10,%) DT1,DD1,AAl,AL1,BL1

READ (10,%) DT2,DD2,AA2,AL2,BL2
READ (10,%) DT3,DD3,AA3,AL3,BL3
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READ (10,*) DT4,DD4,AAd,AL4,BLA

READ (10,*) DT5,DD5,AA5,ALS,BLS

READ (10,*

READ (10,*j DF6,TH6,SI6,PX6,PY6,Pi6

READ (10,%)

READ (10,*) NOBS,R,DANGLE,DLENTH,MAGNX ,MAGNL

CLOSE (10)

C Read in joint angle sets for verification poses
NPOSES=NOBS

DO I=1,NPOSES
READ(9, %)
READ(9,*)THETA(I,1),TBETA(I,2),THETA(I,3), THETA(I, 4},
& THETA(I,5),THETA(I,6)
ENDDO
CLOSE(9)

C Set exact link parameters for the manipulator:

D0 1=2,5
DT(I)=DT(I)+DANGLE
ENDDO

MEAS(1)=MEAS(1)
MEAS(2)=MEAS(2)
MEAS(3)=MEAS(3)
MEAS(4)=NEAS(4)+DLENTH
MEAS(5)=MEAS(5)+DLENTH
MEAS(6)=MEAS(6)+DLENTH

AL(1)=AL1+DANGLE
AL(2)=AL2+DANGLE
AL(3)=AL3+DANGLE
AL(4)=AL4+DANGLE
AL(5)=AL5+DANGLE

AA(1) = AA] + DLENTH
AA(2) = AA2 + DLENTH
AA(3) = AA3 + DLENTH
AA(4) = AA4 + DLENTH
AA(5) = AAS + DLENTH

DD(1) = DD1
DD(2) = DD2
DD(3) = DD3 + DLENTH
DD(4) = DD4 + DLENTH
DD(5) = DD5 + DLENTH
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BL{1) = BL1
BL(2) = BL2 + DANGLE
BL(3) = BL3
BL(4) = BL4
BL(5) = BL4

DF6 = DF6 + DANGLE
TH6 = THE
SI6 = SI6
PX¥6 = PX6 + DLENTH
PY6 = PY6
P16 = P16 + DLENTH

C Read in and set up estimated parameter table

READ(11,%)
READ(11,%)
READ(11,%) EMEAS(1),EMEAS(2),EMEAS(3)

po I=1,5

READ(11,%)

READ(11,%)

READ (11,*) EDT(I),EDD(I),EAA(T),EAL(I),EBL(I)
ENDDO

READ(11,¢%)
READ(11,%)
READ(11,*) EDF6,ETHG6,ESI6,EPX6,EPY6,EPL6
C Main loop through KPOSES joint angle sets
DO K=1,NPOSES
CALL FRS (K,MEAS,DT,AL,AA,DD,BL,FI6,TH6,S16,PX6,PY6,P16,T)
CALL FKS (K,EMEAS,EDT,EAL,EAA,EDD,EBL,EF16,ETHG,BSI6,EPX6,
& EPY6,EP26,ET)
C Compute the differential tool matrix
CALL MATSUB(TDELTA,T,ET)
¢ Compute the pose errors
POSERR=SQRT (TDELTA(1,4)*#2+TDELTA(2,4)**2+TDELTA(3,4)*+2)
ORERR1=(TDELTA(3,2)-TDELTA(2,3))/2
ORERR2=(TDELTA(1,3)~TDELTA(3,1))/2
ORERR3=({TDELTA(2,1)-TDELTA(1,2))/2
ORERR=SQRT(ORERR1#*2+ORERR2**2+0RERR3*#2)

¢ Update total error counts
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POSTERR=( POSERR+(K-1)*POSTERR) /K
ORTERR=(ORERR+(K~1)*ORTERR) /K

c End of main loop
ENDDO

WRITE(6,*) ‘Position error, orientation error’
WRITE(6,*) POSTERR,ORTERR
END

C kkRkkkkdRRdhkRkRRikRRRRbhRESRdRRbRRhbRRhhhRbRRdAbR kR RRARRRRRRRANE

SUBROUTINE FKS (N,MEAS,DT,AL,AA,DD,BL,DF6,TH6,SI6,
& PX6,PY6,P26,T)

REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4)

REAL#8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL#8 TIMAT(4,4), T(4,4), dt(5),al(5),aa(5),dd(5),b1(5)
REAL#*8 THETA(1000,6),ANG(5),MEAS(6)

COMMON TIMAT,THETA
C Initialize the T matrix to an I matrix:

D0 J=1,4
DO K=1,4
T(J,K) = TIMAT{J,K)
ENDDO
ENDDO

C Set up the joint angles

Do 11,5
ANG(I)=THETA(N,I}+DT(I)
ENDDO

PI6=THETA(N,6)+DF6
C Compute the T matrices, Tl thru Té:

CALL T3RPY (MEAS(1),MEAS(2),MEAS(3),T0)
CALL T3XYZ (MEAS(4),MEAS(5),MEAS(6),T0)
CALL MATMULC (TO,TRPY,TXYZ)

CALL TRANSPORM (AL(1),AA(1),DD(1),ANG(1),BL(1),T1)
CALL TRANSFORM (AL(2),AA(2),DD(2),ANG(2),BL(2),T1)
CALL YRANSFORM (AL(3),AA(3),DD(3),ANG(3),BL(3),T1)
CALL TRANSFORM (AL(4),AA(4),DD(4),ANG(4),BL(4),T1)
CALL ‘TRANSPORM (AL(S),AA(5),DD(5),ANG(5),BL(5),T1)
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CALL T3RPY (F16,TB6,SI6,TRPY )
CALL T3XYZ (PX6,PY6,Pl6,TXYI )
CALL MATMULC (T6,TRPY,TXYZ )

C Compute the overall transformation, T:

CALL MATMULA ( T, TO )
CALL MATMULA ( T, T1)
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMCLE ( T, T4 )
CALL MATMULA ( T, T5 )
CALL MATMULE (T, T6 )

RETURN
END

C kkkktkkthkhkrdhkhkiRkkdihhbhohhhdhdhdhohhohhhdbhhhohhkohbhdbhhhkhi
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APPENDIX G

Two of the more important aspects in robot calibration are
precise measurements and maximum joint excursions during data
collection. An instrument referred to as a linear slide is
capable of displacement measurements accurate to 0.01 mn.
However, restricting the end effector to linear travel can
severely limit joint variation for one or more manipulator
joints. In fact, there are a number of configurations in which
one joint may not vary at all. The purpose of this project
then is to establish a position and orientation of the slide
which will maximize joint excursion for all six joints. The
project will require a dual use of the ADS program as is
described below.

A number of methods exist for developing an analytical
approach to the forward kinematic solution for a manipulator
(ie given a set of joint angles, what is the position and
orientation (pose) of the end effector). However, an
analytical solution to the inverse kinematics is much more
difficult or impossible to develop. Therefore, the first
application of ADS will be to solve this nonlinear problem in
the following manner. The design variables will be the 6 joint
angles. The design variables are bounded by the physical
bounds on their rotations and additional restrictions to limit
the robot to one "arm configuration". The design variables are
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used to produce a forward kinematic solution which is then
compared to the "desired" pose. The goal then is to minimize
the error between the "desired" and calculated poses. The pose
information is in the form of a four by four homogeneous
transformation matrix which is calculated in the following
manner. A coordinate frame is assigned to each manipulator
link in a standardized method. Due to two geometric
constraints, 4 parameters are required to transform from link
to link. These parameters include two rotations of which one
is the rotary joint angle and the other is a twist angle, and
two translations which are essentially the link length and an
offset distance. Using a standardized approach, the
transformation takes the following form:

a, b ¢ x

i - a, b, ¢; y
i-1 =
a, b, c, z

0 0 01
=f(ai, di'ei'al')

where the a,, b, and ¢, entries are direction cosines and %, vy,
and 2z entries are the position with respect to the i-1
coordinate frame.

As noted, the transformation is a function of the four
parameters and in this application the nominal values are used
for the twist angle and the translations. The rotary joint
angle is the variable for each transformation matrix. If the
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frame to frame transformation matrices are multiplied in the
following manner, then the manipulator pose (ie. the position
and orientation of the manipulator end effector with respect

to a "world" coordinate frame will be given by the T°¢ matrix:

TS =Ty To T T, T3 T; Te
To compute the inverse solution, a desired pose matrix is
formed which is facilitated in this application by orientating
the "world" coordinate frame with the axis of the slide and at
its zero position. The design variables (the six joint angles)
are given an initial value which are used to compute a forward
solution. The difference between the computed T¢ matrix and
desired T° matrix are calculated term by term. Then, the
objective function is formed as the sum of the squares of the
element by element differences. Note that if a solution exists
(ie. reachable by the manipulator), the objective function
will be zero (or at least "small"). This objective function
value will then be used as a constraint in the second
application of the ADS program to ensure the slide is
"reachable" by the robot. The following is a mathematical

statement of the problem.
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First application of ADS:

Design variables:

L\

[:Y

m

'oocpwcnmcp'

Minimize:

F(}?) =Ebi,j ilj=11213l4

where

and d,, and c,,, are the i,j* entries of the "desired" and
calculated transformation matrices.

In the second application of the ADS program, the design
variables are the x,y and z position of the end of the slide
as well as two orientation angles theta and phi which are
azimuth and elevation angles. The end of the slide must lie
outside a circle of radius of 150 mm from the joint one axis
of rotation and this becomes one of the nonlinear inequality

constraints. The inverse solution for six poses along the
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slide will be computed as described above which will serve two
purposes. As stated earlier, it will constrain the problem
within the "reachable" range of the manipulator. This will
make up six nonlinear inequality constraints. Additionally,
the inverse solution provides six sets of joint angles for one
slide position and orientation. The maximum joint excursion
for each joint is then determined from this information. The
goal is to maximize the excursion of all six joint angles.
Therefore, objective function will be to minimize the negative
value of joint one range over slide travel. The additional
five joint excursion ranges are compared to joint one’s range
and these form 5 additional linear inequality constraints.
Additionally, the maximum displacement of the slide zero point
was placed at 1000 mm from the base frame of the robot and
this made up the thirteenth constraint.

M a t h e mat ically s t a t e d :

Second application of ADS:

Design variables:

il
1}
© DN N X

[ Sy
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Minimize:
F(x) = -4A6,

where delta theta is the maximum range of joint excursion for
the six positions along the slide

Subject to:

g, = A6,-46, <0
g, = 46,-460, <0
g, = A6,-46, <0
g, = 46,-46, <0
g. = A6,-46, <0
g, = F,- 0.01 <0
g, = F,- 0.01 <0
g, = F;- 0.01 <0
g, = F,- 0.01 <0
G, = Fs- 0.01 <0

g,, = F,- 0.01 <0
g, = Vx?+y%~150.0 _ 4
12 150.0
Vx2+yZ+2z2-1500
= <0
913 1500

where F, is the value of the objective function for each of
the six positions along the slide as calculated in the first
application of ADS (inverse kinematic solution) which will be
referred to as the "inner loop" of the program.

The first application of ADS was tested independently.
After considerable testing, it was found that the following
combination of methodology and parameter settings performed

"best".
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istrat 0

iopt 3

ioned 3
dabobj 0.001
dabobm 0.0001
dabstr 0.0001
fdch 0.0001
fdchm 0.00001
itmax 60
scaling off

The results of these tests were compared to results
obtained from a well tested IMSL routine which was unsuitable
for implementation within the "inner" loop of the main program
due to the inability to bound the joint angles and obtain an
objective function value when the endpoint was not
"reachable". The chosen method consistently converged with an
accuracy within 3 digits of the IMSL routine. The major
drawback was the average of 200 function evaluations required.
However, accuracy and precision were crucial so the large
number of function calls was a necessary tradeoff.

With the first ADS application developed and working, this
program was then implemented as a subroutine within the second
application of ADS. This program was tested using the
recommended methods of the ADS manual and additionally with
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one dimensional search methods 2 and 6. No matter what
strategy or optimizer chosen, ioned values of 2 and 6 always
failed to converge (there is no obvious reason for this other
than the non-linearity of the problem). Additionally,
strategies 3, 6 and 7 failed in all configurations attempted
(ie parameter setting, optimizer, and one dimensional search
variations). Of the variations tested that converged, the
following combination of methodology and parameter settings

worked "best".

istrat = 9
iopt = 5
ioned = 7
scaling off
dabobj = 0.001
dabobm = 00,0001
dabstr 0.0001

"Best" in this setting was determined by convergence and
number of function calls. This best method consistently
converged in the fewest number of function calls. However,
even though this is the fastest method, the program still
required as much as 15-20 minutes of run-time on a VAX 3100
station (30 minutes or longer on the older workstations). As
expected (due to the nonlinearity of the problem), there are
apparently a number of 1local minima. Several starting
positions were chosen and tested. Printouts of the results for
several initial values are enclosed. The following lists the
optimum of the local minima found. From the geometry of the
problem this result is probably "close" to the global minimum
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and was a significant improvement from the initial design
values and the design used in the actual experiment.

One improvement to the program which significantly
improved convergence and reduced run-time was a seeding method
used for the inner loop. A reasonable set of initial joiat
angles was chosen prior to the first pass through the
subroutine. The joint angles calculated for the zero position
on the slide were then used for initial values for calculating
the joint angles of the second position. This process was
repeated for each additional measurement position. After the
main program design variables are varied, the initial value of
the joint angles are set to the previously calculated joint
angles for the previous slide zero position before calling the
subroutine.

Additional testing of both parameter settings and initial
values should be performed to both ensure that the program
performs "optimally" and to search for the global minimum.

However, the results at this stage are quite satisfactory.
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RESULTS

A8, = 42,
A®, = 46.
A8 = 96.
A®, = 80.
A8, = 42.
A8, = 45.

i}

it

~N oo oo

FUNCTION EVALUATIONS FOR MAIN LOOP: 120

FUNCTION EVALUATIONS PER INNER LOOP ITERATION: AVERAGE OF 200.
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